convert/Heun
convert to special functions of the Heun class
Calling Sequence
Parameters
Description
Examples
convert(expr, Heun)
expr
-
Maple expression, equation, or a set or list of them
convert/Heun converts, when possible, hypergeometric, MeijerG and special functions into Heun functions ; that is, into one of
FunctionAdvisor( Heun );
The 23 functions in the "Heun" class are:
HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime
convert/Heun accepts as optional arguments all those described in convert[to_special_function] .
An assorted sample of special and elementary functions
functions_2F1≔ChebyshevT,JacobiP,SphericalY,EllipticK,GaussAGM,arctan,arcsin
Their syntax (calling sequence) in Maple
map2⁡FunctionAdvisor,syntax,functions_2F1
ChebyshevT⁡a,z,JacobiP⁡a,b,c,z,SphericalY⁡λ,μ,θ,φ,EllipticK⁡k,GaussAGM⁡x,y,arctan⁡y,x,arcsin⁡z
A Heun representation for them, in these cases using HeunC
map⁡u↦u=convert⁡u,Heun,
ChebyshevT⁡a,z=HeunC⁡0,−12,−2⁢a,0,a2+14,z−1z+1⁢12+z2a,JacobiP⁡a,b,c,z=a+bb⁢HeunC⁡0,b,b+c+2⁢a+1,0,b+1+2⁢a⁢b+c+a+12−b2−b+1⁢a2,z−1z+112+z2b+c+a+1,SphericalY⁡λ,μ,θ,φ=−1μ⁢2⁢λ+1π⁢λ−μ!⁢ⅇI⁢φ⁢μ⁢cos⁡θ+1μ2⁢HeunC⁡0,−μ,2⁢λ+1,0,λ2+λ+12,cos⁡θ−1cos⁡θ+12⁢λ+μ!⁢cos⁡θ−1μ2⁢Γ⁡1−μ⁢12+cos⁡θ2λ+1,EllipticK⁡k=π⁢HeunC⁡0,0,0,0,14,k2k2−12⁢−k2+1,GaussAGM⁡x,y=x+y⁢y⁢xx+y2HeunC⁡0,0,0,0,14,−x−y24⁢y⁢x,arctan⁡y,x=−HeunC⁡0,1,0,0,12,I⁢y−x2+y2+xx2+y2⁢1+I⁢y−x2+y2+xx2+y2⁢−I⁢y+x2+y2−xI⁢x−y,arcsin⁡z=z⁢HeunC⁡0,12,0,0,14,z2z2−1−z2+1
A sample of special and elementary functions not admitting HeunG representation
functions_1F1≔erf⁡z,dawson⁡z,Ei⁡a,z,LaguerreL⁡a,b,z,hypergeom⁡a,b,z,MeijerG⁡a,,0,b,z,cos⁡z,sin⁡z
functions_1F1≔erf⁡z,dawson⁡z,Eia⁡z,LaguerreL⁡a,b,z,hypergeom⁡a,b,z,MeijerG⁡a,,0,b,z,cos⁡z,sin⁡z
By default, the results are returned in terms of the lower Heun functions , that is, those with less parameters, in this case HeunB
map⁡u↦u=convert⁡u,Heun,functions_1F1
erf⁡z=2⁢z⁢HeunB⁡1,0,1,0,−z2π,dawson⁡z=z⁢HeunB⁡1,0,1,0,z2ⅇz2,Eia⁡z=HeunB⁡2−2⁢a,0,2⁢a,0,−za−1+za−1⁢Γ⁡1−a,LaguerreL⁡a,b,z=a+ba⁢HeunB⁡2⁢b,0,2⁢b+2+4⁢a,0,z,hypergeom⁡a,b,z=HeunB⁡2⁢b−2,0,2⁢b−4⁢a,0,z,MeijerG⁡a,,0,b,z=Γ⁡1−a⁢HeunB⁡−2⁢b,0,−2−2⁢b+4⁢a,0,−zΓ⁡1−b,cos⁡z=2⁢z+π⁢HeunB⁡2,0,0,0,I⁢2⁢z+π2⁢ⅇI2⁢2⁢z+π,sin⁡z=z⁢HeunB⁡2,0,0,0,2⁢I⁢zⅇI⁢z
A representation in terms of higher Heun functions , in this case HeunC , because these functions being converted belong to the 1F1 class, can be obtained specifying HeunC instead of Heun in the call to convert
map⁡u↦u=convert⁡u,HeunC,functions_1F1
erf⁡z=2⁢−z3+z⁢HeunC⁡1,12,1,−14,34,z2π,dawson⁡z=z⁢HeunC⁡1,12,1,−14,34,−z2⁢z2+1ⅇz2,Eia⁡z=1−z⁢HeunC⁡1,1−a,1,−a2,12+a2,za−1+za−1⁢Γ⁡1−a,LaguerreL⁡a,b,z=a+ba⁢HeunC⁡1,b,1,−b2−12−a,b2+1+a,−z⁢z+1,hypergeom⁡a,b,z=HeunC⁡1,b−1,1,−b2+a,b2−a+12,−z⁢z+1,MeijerG⁡a,,0,b,z=Γ⁡1−a⁢HeunC⁡1,−b,1,b2−a+12,−b2+a,z⁢1−zΓ⁡1−b,cos⁡z=2⁢z+π⁢HeunC⁡1,1,1,0,12,−I⁢2⁢z+π⁢I⁢π+2⁢I⁢z+12⁢ⅇI2⁢2⁢z+π,sin⁡z=2⁢I⁢z2+z⁢HeunC⁡1,1,1,0,12,−2⁢I⁢zⅇI⁢z
See Also
convert
convert[`1F1`]
convert[`2F1`]
convert[to_special_function]
FunctionAdvisor
Heun functions
HeunB
HeunC
HeunG
Download Help Document
AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル