Close
Close window
Heun - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

convert/Heun

convert to special functions of the Heun class

Calling Sequence

convert(expr, Heun)

Parameters

expr

-

Maple expression, equation, or a set or list of them

Description

convert/Heun converts, when possible, hypergeometric, MeijerG and special functions into Heun functions ; that is, into one of

>

FunctionAdvisor( Heun );

The 23 functions in the "Heun" class are:

HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime

(1)

convert/Heun accepts as optional arguments all those described in convert[to_special_function] .

Examples

An assorted sample of special and elementary functions

>

functions_2F1ChebyshevT,JacobiP,SphericalY,EllipticK,GaussAGM,arctan,arcsin

functions_2F1ChebyshevT,JacobiP,SphericalY,EllipticK,GaussAGM,arctan,arcsin

(2)

Their syntax (calling sequence) in Maple

>

map2FunctionAdvisor,syntax,functions_2F1

ChebyshevTa,z,JacobiPa,b,c,z,SphericalYλ,μ,θ,φ,EllipticKk,GaussAGMx,y,arctany,x,arcsinz

(3)

A Heun representation for them, in these cases using HeunC

>

mapuu=convertu,Heun,

ChebyshevTa,z=HeunC0,12,2a,0,a2+14,z1z+112+z2a,JacobiPa,b,c,z=a+bbHeunC0,b,b+c+2a+1,0,b+1+2ab+c+a+12b2b+1a2,z1z+112+z2b+c+a+1,SphericalYλ,μ,θ,φ=−1μ2λ+1πλμ!ⅇIφμcosθ+1μ2HeunC0,μ,2λ+1,0,λ2+λ+12,cosθ1cosθ+12λ+μ!cosθ1μ2Γ1μ12+cosθ2λ+1,EllipticKk=πHeunC0,0,0,0,14,k2k212k2+1,GaussAGMx,y=x+yyxx+y2HeunC0,0,0,0,14,xy24yx,arctany,x=HeunC0,1,0,0,12,Iyx2+y2+xx2+y21+Iyx2+y2+xx2+y2Iy+x2+y2xIxy,arcsinz=zHeunC0,12,0,0,14,z2z21z2+1

(4)

A sample of special and elementary functions not admitting HeunG representation

>

functions_1F1erfz,dawsonz,Eia,z,LaguerreLa,b,z,hypergeoma,b,z,MeijerGa,,0,b,z,cosz,sinz

functions_1F1erfz,dawsonz,Eiaz,LaguerreLa,b,z,hypergeoma,b,z,MeijerGa,,0,b,z,cosz,sinz

(5)

By default, the results are returned in terms of the lower Heun functions , that is, those with less parameters, in this case HeunB

>

mapuu=convertu,Heun,functions_1F1

erfz=2zHeunB1,0,1,0,z2π,dawsonz=zHeunB1,0,1,0,z2ⅇz2,Eiaz=HeunB22a,0,2a,0,za1+za1Γ1a,LaguerreLa,b,z=a+baHeunB2b,0,2b+2+4a,0,z,hypergeoma,b,z=HeunB2b2,0,2b4a,0,z,MeijerGa,,0,b,z=Γ1aHeunB2b,0,22b+4a,0,zΓ1b,cosz=2z+πHeunB2,0,0,0,I2z+π2ⅇI22z+π,sinz=zHeunB2,0,0,0,2IzⅇIz

(6)

A representation in terms of higher Heun functions , in this case HeunC , because these functions being converted belong to the 1F1 class, can be obtained specifying HeunC instead of Heun in the call to convert

>

mapuu=convertu,HeunC,functions_1F1

erfz=2z3+zHeunC1,12,1,14,34,z2π,dawsonz=zHeunC1,12,1,14,34,z2z2+1ⅇz2,Eiaz=1zHeunC1,1a,1,a2,12+a2,za1+za1Γ1a,LaguerreLa,b,z=a+baHeunC1,b,1,b212a,b2+1+a,zz+1,hypergeoma,b,z=HeunC1,b1,1,b2+a,b2a+12,zz+1,MeijerGa,,0,b,z=Γ1aHeunC1,b,1,b2a+12,b2+a,z1zΓ1b,cosz=2z+πHeunC1,1,1,0,12,−I2z+πIπ+2Iz+12ⅇI22z+π,sinz=2Iz2+zHeunC1,1,1,0,12,2IzⅇIz

(7)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /