Close
Close window
chrem - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

chrem

Chinese Remainder Algorithm

Calling Sequence

chrem(u, m)

Parameters

u

-

list [u1,..., un] of evaluations

m

-

list of moduli [m1,..., mn]

Description

The list of moduli m must be pairwise relatively prime positive integers. (For the case of non-coprime moduli, see NumberTheory[ChineseRemainder] .) Both lists u and m must be the same length n. The list of images u need not be reduced modulo m on input. In the following, M denotes the product of the moduli.

If u is a list of integers, chrem(u, m) computes the unique positive integer a such that amodm1=u1,amodm2=u2,...,amodmn=un , and 0a<M.

If the global variable mod has been assigned to mods then the result a is returned in the symmetric range for the integers modulo M. For example, the symmetric range for the integers modulo M=35 is -17a+17.

If u is a list of polynomials, chrem is applied across the polynomials so that the output f is a polynomial satisfying fmodm1=u1 , ..., fmodmn=un.

If u is a list of lists, chrem is applied across the lists so that the output will be a list L satisfying Lmodm1=u1, ..., Lmodmn=un .

For a definition, see Chinese remainder theorem.

Examples

>

chrem1&comma;2&comma;5&comma;7

16

(1)
>

chrem3x+1&comma;x+2y+2&comma;5&comma;7

8x+16+30y

(2)
>

chrem3&comma;0&comma;1&comma;1&comma;2&comma;2&comma;5&comma;7

8&comma;30&comma;16

(3)
>

`mod`mods

modmods

(4)
>

chrem3x+1&comma;x+2y+2&comma;5&comma;7

8x+165y

(5)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /