Close
Close window
DirectionalDiff - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

VectorCalculus

DirectionalDiff

computes the directional derivative of a scalar field in the direction given by a vector

Calling Sequence

DirectionalDiff(F,v,c)

DirectionalDiff(F,p,dir,c)

Parameters

F

-

the scalar or vector field to differentiate

v

-

Vector(algebraic); the direction Vector or vector field

p

-

point=list(algebraic) or point=Vector(algebraic); point where the derivative will be evaluated

dir

-

list(algebraic) or Vector(algebraic); components specifying the direction of the directional derivative in a specified coordinate system

c

-

(optional) list(name) or symbol[name, name, ...]; list of names or name of the coordinate system indexed by the coordinate names

Description

The DirectionalDiff(F,v,c) command, where F is a scalar function, computes the directional derivative of F at the location and direction specified by v. The expression F is interpreted in the coordinate system specified by c, if provided, and otherwise in the current coordinate system.

The DirectionalDiff(F,v,c) command, where F is a VectorField , computes the VectorField of directional derivatives of each component of F with respect to v.

The argument v can be a free Vector in Cartesian coordinates, a position Vector , a vector field or a rooted Vector . If v is one of the first three, the result will be a scalar field of all directional derivatives in Rn in the directions specified by v; this scalar field will be given in the same coordinate system as is used to interpret expression F. If v is a rooted Vector , the result is the value of the directional derivative of F in the direction of v taken at the root point of v.

If F is a scalar function, the Vector v is normalized. If F is a VectorField, the Vector v is not normalized.

The DirectionalDiff(F,p,dir,c) command computes the directional derivative of F at the point p in the direction dir, where F is interpreted in the coordinate system specified by c, if provided, and otherwise in the current coordinate system. The point p can be a list, a free Vector in Cartesian coordinates or a position Vector . The direction dir can be a free Vector in Cartesian coordinates, a position Vector or a vector field . The result is the value of DirectionalDiff(F,dir,c) evaluated at the point p.

If c is a list of names, the directional derivative of F is taken with respect to these names in the current coordinate system.

If c is an indexed coordinate system, F is interpreted in the combination of that coordinate system and coordinate names.

If c is not specified, F is interpreted in the current coordinate system, whose coordinate name indices define the function's variables.

Note that c has no influence on the interpretation of the direction vector v.

An operator implementing the directional derivative with respect to a VectorField can be obtained using the dot operator with Del , as in V·Del.

Examples

>

withVectorCalculus:

Introductory examples where a coordinate system is specified

>

SetCoordinatescartesianx,y

cartesianx,y

(1)
>

v11,2:

>

DirectionalDiffr2,v1,polarr,t

2rcost55+4rsint55

(2)
>

WVectorFieldu+v,v,cartesianu,v

Wu+ve_u+ve_v

(3)
>

DirectionalDiffr2,point=1,π,W,polarr,t

2

(4)
>

ddDirectionalDiffr2,W,polarr,t:

>

simplifyevaldd,r=1,t=π

2

(5)
>

ddDirectionalDiffVectorFieldxy,xy,W

ddx+yyxye_x+x+yy+yxe_y

(6)

Examples where a list of variable names is provided

>

DirectionalDiffpq,1,2,p,q

q55+2p55

(7)
>

v21,0:

>

SetCoordinatespolar

polar

(8)
>

ddDirectionalDiffrcosθ,v2,r,θ:

>

simplifydd

1

(9)

Examples where the information is given in the form of a Rooted Vector

>

SetCoordinatespolarr,t

polarr,t

(10)
>

vsVectorSpace1,π2,polarr,t:

>

v3vs:-Vector1,1

v311

(11)
>

v4vs:-Vector0,1

v401

(12)
>

DirectionalDiffr2,v3

2

(13)
>

DirectionalDiffr2,v4

0

(14)
>

SetCoordinatescartesianx,y

cartesianx,y

(15)
>

DirectionalDiffy2x2,point=1,2,0,1,cartesianx,y

4

(16)
>

DirectionalDiffy2x2,RootedVectorroot=1,2,0,1,cartesianx,y

4

(17)
>

DirectionalDiffy2x2,RootedVectorroot=1,π2,1,1,polarr,t,cartesianx,y

0

(18)

Examples using the dot operator to construct a directional derivative operator

>

SetCoordinatescartesianx,y,z

cartesianx,y,z

(19)
>

VVectorFieldyz,xz,xy

Vyze_x+xze_y+yxe_z

(20)
>

normalV·Delxyz

y2x2+x2z2+y2z2

(21)
>

V·DelVectorField1x,1y,1z

yzx2e_x+xzy2e_y+yxz2e_z

(22)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /