Student[ODEs][Solve]
System
Solve a system of first order linear ODEs
Calling Sequence
Parameters
Description
Examples
Compatibility
System(SYS, Y)
System(SYS)
System(A, F, Y)
SYS
-
list, set, or equation; a system of first order linear ordinary differential equations
Y
list or set or Vector of functions; the solving variables
A
Matrix; the Matrix of coefficients
F
Vector; the Vector of forcing functions
The System(SYS, Y) command finds the solution of a system of first order linear ODEs.
The system SYS may be written as a list or set of ODEs. If the solving variables cannot be unambiguously determined from the form of SYS, Y must also be specified as a list or set containing the solving variables.
Alternatively, SYS may be written as a single equation of the form:
DY=A·Y+F
where Y is a Vector of solving variables, DY a Vector of their derivatives, A is the Matrix of coefficients, and F is the Vector of forcing functions. In this case, Y does not need to be specified as an extra argument since it can be determined from the form of SYS.
A third syntax, System(A, F, Y), is also available as a shortcut to the above syntax System(DY = A . Y + F).
Use the option output=steps to make this command return an annotated step-by-step solution. Further control over the format and display of the step-by-step solution is available using the options described in Student:-Basics:-OutputStepsRecord . The options supported by that command can be passed to this one.
with⁡StudentODEsSolve:
Here the system is written as a set of equations:
sys1≔diff⁡y1⁡x,x=7⁢y1⁡x+y2⁡x,diff⁡y2⁡x,x=−4⁢y1⁡x+3⁢y2⁡x
sys1≔ⅆⅆxy1⁡x=7⁢y1⁡x+y2⁡x,ⅆⅆxy2⁡x=−4⁢y1⁡x+3⁢y2⁡x
System⁡sys1,y1⁡x,y2⁡x
y1⁡x=−ⅇ5⁢x⁢2⁢c__2⁢x+2⁢c__1+c__24,y2⁡x=ⅇ5⁢x⁢c__2⁢x+c__1
sys2≔diff⁡y1⁡x,x=7⁢y1⁡x+y2⁡x+1,diff⁡y2⁡x,x=−4⁢y1⁡x+3⁢y2⁡x+exp⁡x
sys2≔ⅆⅆxy1⁡x=7⁢y1⁡x+y2⁡x+1,ⅆⅆxy2⁡x=−4⁢y1⁡x+3⁢y2⁡x+ⅇx
System⁡sys2
y1⁡x=−200⁢x−100⁢c__2+260⁢x−200⁢c__1+23⁢ⅇ5⁢x400+ⅇx16−325,y2⁡x=200⁢c__2−260⁢x+200⁢c__1+107⁢ⅇ5⁢x200−3⁢ⅇx8−425
sys3≔diff⁡y1⁡x,x=6⁢y1⁡x−3⁢y2⁡x+1,diff⁡y2⁡x,x=−4⁢y1⁡x+9⁢y2⁡x+cos⁡x
sys3≔ⅆⅆxy1⁡x=6⁢y1⁡x−3⁢y2⁡x+1,ⅆⅆxy2⁡x=−4⁢y1⁡x+9⁢y2⁡x+cos⁡x
System⁡sys3
y1⁡x=380247⁢c__1+59492⁢57+1140741⁢c__1+424080⁢ⅇ−−15+57⁢x23041976+−380247⁢c__2−59492⁢57+1140741⁢c__2+424080⁢ⅇ15+57⁢x23041976−123⁢cos⁡x1906+45⁢sin⁡x1906−314,y2⁡x=1520988⁢c__1+20467⁢57+176567⁢ⅇ−−15+57⁢x21520988+1520988⁢c__2−20467⁢57+176567⁢ⅇ15+57⁢x21520988−261⁢cos⁡x1906+49⁢sin⁡x1906−221
In these examples the systems are written in Vector-Matrix format:
Y≔v⁡x,w⁡x
Y≔v⁡xw⁡x
A≔7|1,−4|3
A≔71−43
F≔1,exp⁡x
F≔1ⅇx
sys4≔diff⁡Y,x=A·Y
sys4≔ⅆⅆxv⁡xⅆⅆxw⁡x=7⁢v⁡x+w⁡x−4⁢v⁡x+3⁢w⁡x
System⁡sys4
v⁡x=−ⅇ5⁢x⁢2⁢c__2⁢x+2⁢c__1+c__24,w⁡x=ⅇ5⁢x⁢c__2⁢x+c__1
sys5≔diff⁡Y,x=%.⁡A,Y+F
sys5≔ⅆⅆxv⁡xⅆⅆxw⁡x=71−43·v⁡xw⁡x+1ⅇx
System⁡sys5
v⁡x=−200⁢x−100⁢c__2+260⁢x−200⁢c__1+23⁢ⅇ5⁢x400+ⅇx16−325,w⁡x=200⁢c__2−260⁢x+200⁢c__1+107⁢ⅇ5⁢x200−3⁢ⅇx8−425
B≔1|2,3|2
B≔1232
sys6≔diff⁡Y,x=B·Y+F
sys6≔ⅆⅆxv⁡xⅆⅆxw⁡x=v⁡x+2⁢w⁡x+13⁢v⁡x+2⁢w⁡x+ⅇx
System⁡B,F,Y
v⁡x=ⅇ−x⁢−30⁢c__1−1230+20⁢c__2+7⁢ⅇ4⁢x30−ⅇx3+12,w⁡x=ⅇ−x⁢20⁢c__1+820−34+20⁢c__2+7⁢ⅇ4⁢x20
The Student[ODEs][Solve][System] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021 .
The Student[ODEs][Solve][System] command was updated in Maple 2022.
The output option was introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022 .
See Also
dsolve
Matrix
Student
Student[ODEs]
Vector
Download Help Document
AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル