Student[ODEs][Solve]
HighOrder
Solve a high order ODE
Calling Sequence
Parameters
Description
Examples
Compatibility
HighOrder(ODE, y(x))
ODE
-
a high order ordinary differential equation
y
name; the dependent variable
x
name; the independent variable
The HighOrder(ODE, y(x)) command finds the solution of a high order ODE, i.e. where the order is greater than 2.
Use the option output=steps to make this command return an annotated step-by-step solution. Further control over the format and display of the step-by-step solution is available using the options described in Student:-Basics:-OutputStepsRecord . The options supported by that command can be passed to this one.
with⁡StudentODEsSolve:
ode1≔x3⁢diff⁡y⁡x,x,x,x+3⁢x2⁢diff⁡y⁡x,x,x−6⁢x⁢diff⁡y⁡x,x−6⁢y⁡x=0
ode1≔x3⁢ⅆ3ⅆx3y⁡x+3⁢x2⁢ⅆ2ⅆx2y⁡x−6⁢x⁢ⅆⅆxy⁡x−6⁢y⁡x=0
IC≔eval⁡diff⁡y⁡x,x,x,x=1=−1,eval⁡diff⁡y⁡x,x,x=1=1,y⁡1=2
IC≔ⅆ2ⅆx2y⁡xx=1|ⅆ2ⅆx2y⁡xx=1=−1,ⅆⅆxy⁡xx=1|ⅆⅆxy⁡xx=1=1,y⁡1=2
HighOrder⁡ode1,y⁡x
y⁡x=c__1⁢x5+c__3⁢x+c__2x2
HighOrder⁡ode1,y⁡x,ICs=IC
y⁡x=7⁢x5+65⁢x−3220⁢x2
ode2≔diff⁡y⁡x,x,x,x+3⁢diff⁡y⁡x,x,x+4⁢diff⁡y⁡x,x+2⁢y⁡x=0
ode2≔ⅆ3ⅆx3y⁡x+3⁢ⅆ2ⅆx2y⁡x+4⁢ⅆⅆxy⁡x+2⁢y⁡x=0
HighOrder⁡ode2,y⁡x
y⁡x=ⅇ−x⁢c__1+c__2⁢sin⁡x+c__3⁢cos⁡x
HighOrder⁡ode2,y⁡x,ICs=IC
y⁡x=−ⅇ1−x⁢−5+3⁢sin⁡1−cos⁡1⁢sin⁡x+3⁢sin⁡1+cos⁡1⁢cos⁡x
The Student[ODEs][Solve][HighOrder] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021 .
The Student[ODEs][Solve][HighOrder] command was updated in Maple 2022.
The output option was introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022 .
See Also
dsolve
Student
Student[ODEs]
Student[ODEs][DifferentialOrder]
Download Help Document
AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル