Close
Close window
stirling2 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Stirling2

computes the Stirling numbers of the second kind

Calling Sequence

Stirling2(n, m)

combinat[stirling2](n, m)

Parameters

n, m

-

integers

Description

The Stirling2(n,m) command computes the Stirling numbers of the second kind from the well-known formula in terms of the binomial coefficients.

Stirling2n,m=k=0mmkknm!−1km

Instead of Stirling2 you can also use the synonym combinat[stirling2].

Regarding combinatorial functions, Stirling2n,m is the number of ways of partitioning a set of n elements into m non-empty subsets. The Stirling numbers also enter binomial series, Mathieu function formulas, and are relevant in applications in Physics.

Examples

Stirling2 only evaluates to a number when m and n are positive integers

>

Stirling2n,m

Stirling2n,m

(1)
>

=convert,Sum

Stirling2n,m=_k1=0mm_k1_k1nm!−1m+_k1

(2)
>

eval,n=10,m=5

42525=_k1=055_k1_k110120−15+_k1

(3)
>

value

42525=42525

(4)

See Also


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /