Close
Close window
Covariance - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Statistics

Covariance

compute the covariance/covariance matrix

Calling Sequence

Covariance(X, Y, options)

CovarianceMatrix(M, options)

Parameters

M

-

Matrix; data samples

X

-

data set , random variable, or distribution

Y

-

data set , random variable, or distribution

options

-

(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the covariance/covariance matrix

Description

The Covariance function computes the covariance of two data sets, or the covariance of two random variables or distributions. The CovarianceMatrix function computes the covariance matrix of multiple data sets.

The first parameter can be a data set (given as e.g. a Vector ), a distribution (see Statistics[Distribution] ), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable] ).

Computation

By default, all computations involving random variables are performed symbolically (see option numeric below).

All computations involving data are performed in floating-point; therefore, all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Options

The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.

ignore=truefalse -- This option controls how missing data is handled by the Covariance command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the Covariance command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.

weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.

Examples

>

withStatistics:

>

Useqi,i=57..77,undefined:

>

Vseqsini,i=57..77,undefined:

>

W2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:

>

CovarianceU,V

Floatundefined

(1)
>

CovarianceU,V,ignore

−0.226147813941922

(2)
>

CovarianceU,V,weights=W,ignore=true

−0.167449265684222

(3)
>

MMatrixU,V

M57sin5758sin5859sin5960sin6061sin6162sin6263sin6364sin6465sin6566sin6622 × 2 Matrix

(4)
>

CovarianceMatrixM,ignore

38.5000000000000−0.226147813941922−0.2261478139419220.530662127023855

(5)

References

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /