Close
Close window
ShiftEquivalent - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

PolynomialTools

ShiftEquivalent

test whether two polynomials are shift equivalent

Calling Sequence

ShiftEquivalent(f,g,x)

ShiftEquivalent(f,g,x,T)

Parameters

f, g

-

polynomials in x

x

-

indeterminate

T

-

(optional) type

Description

The ShiftEquivalent command determines whether the two polynomials f,g are shift equivalent w.r.t. the variable x, that is, whether there is an h independent of x satisfying lcgfx+h=lcfgx, where lc denotes the leading coefficient with respect to x. It returns h, if it exists, and otherwise FAIL.

If the optional argument T is specified, then ShiftEquivalent returns FAIL even if h exists but is not of type T. This is more efficient than first calling ShiftEquivalent without the optional argument and then checking whether the return value is of type T.

It is assumed that both input polynomials are collected w.r.t. the variable x.

If f,g are nonconstant w.r.t. x, then h is uniquely determined. If both are nonzero and constant w.r.t. x, or if both are zero, then the return value is 0.

Examples

>

withPolynomialTools:

>

ShiftEquivalentx2+x+1,x2x+1,x

−1

(1)
>

Translatex2+x+1,x,

x2x+1

(2)
>

ShiftEquivalentx2+1,x2x+1,x

FAIL

(3)

Leading coefficients do not matter.

>

ShiftEquivalent2x1,x+12,x

1

(4)
>

Translate2x1,x,

1+2x

(5)
>

ShiftEquivalent2x1,x,x

12

(6)
>

ShiftEquivalent2x1,x,x,integer

FAIL

(7)
>

ShiftEquivalentx,x+n,x

n

(8)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /