Close
Close window
Log - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Ordinals

Log

left logarithm of ordinals

log

left logarithm of ordinals

Calling Sequence

Log(a, b)

log[b](a)

log(a)

Parameters

a, b

-

ordinals , nonnegative integers, or polynomials with positive integer coefficients

Returns

All calling sequences return an expression sequence l, q, r such that a=blq+r, where l, q and r are ordinals , nonnegative integers, or polynomials with positive integer coefficients, and q and r are as small as possible.

Description

The Log(a,b) calling sequence computes the unique ordinal numbers l, q, and r such that a=blq+r, 0qb and rbl, where is the strict ordering of ordinals.

If b=0 or b=1, a division by zero error is raised.

The log[b](a) and Log(a,b) calling sequences are equivalent. The log(a) calling sequence is equivalent to Log(a,ω).

If one of a and b is a parametric ordinal and the logarithm cannot be taken, an error is raised.

The log command overloads the corresponding top-level routine log . The top-level command is still accessible via the :- qualifier, that is, as :-log.

Examples

>

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)
>

aOrdinal4&comma;1&comma;2&comma;2&comma;1&comma;3&comma;0&comma;5

aω4&plus;ω22&plus;ω3&plus;5

(2)
>

bOrdinal2&comma;1&comma;0&comma;2

bω2&plus;2

(3)
>

l,q,rLoga&comma;b

l,q,r2,1,ω3&plus;5

(4)
>

logba

2,1,ω3&plus;5

(5)
>

bl

ω4&plus;ω22&plus;2

(6)
>

a=·q+r

ω4&plus;ω22&plus;ω3&plus;5=ω4&plus;ω22&plus;ω3&plus;5

(7)
>

LessThanq&comma;b,LessThanr&comma;

true,true

(8)
>

l,q,rLoga&comma;b+1

l,q,r1,ω2&plus;2,ω3&plus;5

(9)
>

a=b+1l·q+r

ω4&plus;ω22&plus;ω3&plus;5=ω4&plus;ω22&plus;ω3&plus;5

(10)
>

LessThanq&comma;b+1,LessThanr&comma;b+1l

true,true

(11)
>

loga

4,1,ω22&plus;ω3&plus;5

(12)
>

Splita&comma;degree=degreea

ω4&comma;ω22&plus;ω3&plus;5

(13)

Parametric examples:

>

Loga&comma;ω2+2+x

>

Loga&comma;ω2+3+x

1,ω2&plus;2,ω3&plus;5

(14)
>

Loga&comma;ω2+2

2,1,ω3&plus;5

(15)
>

Loga&comma;ω2+1

2,1,ω2&plus;ω3&plus;5

(16)
>

Loga&comma;ω2

2,1,ω22&plus;ω3&plus;5

(17)
>

Loga&comma;ω+1+x

3,ω,ω22&plus;ω3&plus;5

(18)
>

Loga&comma;ω

4,1,ω22&plus;ω3&plus;5

(19)

When the base is constant:

>

l,q,rLoga&comma;x+2

l,q,rω4,1,ω22&plus;ω3&plus;5

(20)
>

x+2l

ω4

(21)
>

a=·q+r

ω4&plus;ω22&plus;ω3&plus;5=ω4&plus;ω22&plus;ω3&plus;5

(22)

When both arguments are integers, the first return value is the integer part of the logarithm over the real numbers:

>

l,q,rLog100&comma;3

l,q,r4,1,19

(23)
>

evalfln100ln3

4.191806548

(24)
>

3lq+r

100

(25)

Example with a nonconstant logarithm:

>

bω·2+3

bω2&plus;3

(26)
>

bb

ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω23

(27)
>

aDec+x

aωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω22&plus;ωω&plus;1&plus;x

(28)
>

Loga&comma;b

ω2&plus;2,ω2&plus;2,ωω2&plus;22&plus;ωω2&plus;16&plus;ωω22&plus;ωω&plus;1&plus;x

(29)

Compatibility

The Ordinals[Log] and Ordinals[log] commands were introduced in Maple 2015.

For more information on Maple 2015 changes, see Updates in Maple 2015 .


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /