Close
Close window
Irreduc - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Irreduc

inert irreducibility function

Calling Sequence

Irreduc(a)

Irreduc(a, K)

Parameters

a

-

multivariate polynomial

K

-

RootOf

Description

The Irreduc function is a placeholder for testing the irreducibility of the multivariate polynomial a. It is used in conjunction with mod and modp1.

Formally, an element a of a commutative ring R is said to be "irreducible" if it is not zero, not a unit, and a=bc implies either b or c is a unit.

In this context where R is the ring of polynomials over the integers mod p, which is a finite field, the units are the non-zero constant polynomials. Hence all constant polynomials are not irreducible by this definition.

The call Irreduc(a) mod p returns true iff a is "irreducible" modulo p. The polynomial a must have rational coefficients or coefficients from a finite field specified by RootOf expressions.

The call Irreduc(a, K) mod p returns true iff a is "irreducible" modulo p over the finite field defined by K, an algebraic extension of the integers mod p where K is a RootOf.

The call modp1(Irreduc(a), p) returns true iff a is "irreducible" modulo p. The polynomial a must be in the modp1 representation.

Examples

>

Irreduc2mod7

false

(1)
>

Irreduc2x2+6x+6mod7

false

(2)
>

Irreducx4+x+1mod2

true

(3)
>

aliasα=RootOfx4+x+1:

>

Irreducx4+x+1,αmod2

false

(4)
>

Factorx4+x+1,αmod2

x+αx+α+1α2+x+1α2+x

(5)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /