Close
Close window
GegenbauerC - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

GegenbauerC

Gegenbauer (ultraspherical) function

Calling Sequence

GegenbauerC(n, a, x)

Parameters

n

-

algebraic expression

a

-

algebraic expression

x

-

algebraic expression

Description

The GegenbauerC(n, a, x) function computes the nth Gegenbauer polynomial - see Abramowitz and Stegun, Handbook of Mathematical Functions, Chap. 22.

When all of 2a,1+n,n+2a are not a negative integer or zero, the Gegenbauer polynomials satisfy:

>

GegenbauerC(n,a,z) = 'piecewise'(n::negint,0, n=0, 1,convert(GegenbauerC(n,a,z),hypergeom));

GegenbauerCn,a,z=0n::1n=0Γn+2ahypergeomn,n+2a,12+a,z2+12Γ1+nΓ2aotherwise

(1)

and are orthogonal on the interval −1,1 with respect to the weight function wz=z2+1a12:

>

Int(w(z)* GegenbauerC(m, a, z) * GegenbauerC(n, a, z), z=-1..1) = 'piecewise'(n=m, Pi*2^(1-2*a)*GAMMA(n+2*a)/(n!*(n+a)*GAMMA(a)^2),0);

−11wzGegenbauerCm,a,zGegenbauerCn,a,zⅆz=π212aΓn+2an!n+aΓa2n=m0otherwise

(2)

When any of 2a,1+n,n+2a is a negative integer or zero, the Gegenbauer polynomials are computed using the following identity:

>

GegenbauerC(n,a,z) = (2*a*z*(1+2*a)*GegenbauerC(n-1,1+a,z) + 4*(-1+z^2)*a*(1+a)*GegenbauerC(n-2,a+2,z)) / ((n+2*a)*n);

GegenbauerCn,a,z=2az1+2aGegenbauerCn1,1+a,z+4z21a1+aGegenbauerCn2,a+2,zn+2an

(3)

which in turn can be derived from the differential equation with respect to z satisfied by this function:

>

f(z) = GegenbauerC(a,b,z);

fz=GegenbauerCa,b,z

(4)
>

diff(f(z),z,z) = (-1-2*b)*z/(-1+z^2)*diff(f(z),z)+a*(2*b+a)/(-1+z^2)*f(z);

ⅆ2ⅆz2fz=12bzⅆⅆzfzz21+a2b+afzz21

(5)

For n::posint and n > 1 and a <> 0, the Gegenbauer polynomials satisfy the following recurrence relations:

>

GegenbauerC(0,a,z) = 1:

>

GegenbauerC(1,a,z) = 2*a*z:

>

GegenbauerC(n,a,z) = 2*(n+a-1)/n*z*GegenbauerC(n-1,a,z) - (n+2*a-2)/n*GegenbauerC(n-2,a,z):

and for a = 0, they are related to the ChebyshevT polynomials:

>

GegenbauerC(n,0,z) = 2/n*ChebyshevT(n,z):

Examples

Special values with respect to n:

>

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingn::negint

0

(6)
>

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingn=0

1

(7)
>

simplifyGegenbauerC3&comma;a&comma;z&comma;GegenbauerC

4az2a+2z232z1+a3

(8)

Special values with respect to a:

>

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassuminga::negint

0

(9)
>

simplifyGegenbauerC2&comma;a&comma;z&comma;GegenbauerCassuminga=0

2z21

(10)
>

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassuminga=0,n::posint

−1nGegenbauerCn&comma;a&comma;z

(11)

Special values with respect to z:

>

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingz=0

2nΓa+n2πΓaΓ12n2Γ1+n

(12)
>

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingz=1,n::nonnegint

Γn+2aΓ1+nΓ2a

(13)
>

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingz=1,n::nonnegint

−1nΓn+2aΓ2an!

(14)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /