Gcd
inert gcd function
Calling Sequence
Parameters
Description
Examples
Gcd(a, b)
Gcd(a, b, 's', 't')
a, b
-
multivariate polynomials
s, t
(optional) unevaluated names
The Gcd function is a placeholder for representing the greatest common divisor of a and b where a and b are polynomials. If s and t are specified, they are assigned the cofactors. Gcd is used in conjunction with either mod , modp1 or evala as described below which define the coefficient domain.
The call Gcd(a, b) mod p computes the greatest common divisor of a and b modulo p a prime integer. The inputs a and b must be polynomials over the rationals or over a finite field specified by RootOf expressions.
The call modp1(Gcd(a, b), p) does likewise for a and b, polynomials in the modp1 representation.
The call evala(Gcd(a, b)) does likewise for a and b, multivariate polynomials with algebraic coefficients defined by RootOf or radicals expressions. See evala,Gcd for more information.
Gcd⁡x+2,x+3mod7
1
Gcd⁡x2+3⁢x+2,x2+4⁢x+3,s,tmod11
x+1
s,t
x+2,x+3
evala⁡Gcd⁡x2−x−212⁢x+212,x2−2,s1,t1
x−2
s1,t1
x−1,x+2
evala⁡Gcd⁡x2−z2,x−RootOf⁡_Z2−z3
x−RootOf⁡_Z2−z2
See Also
evala
gcd
Gcdex
mod
RootOf
Download Help Document
AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル