Close
Close window
Thermophysical Data - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


Home : Support : Online Help : System : Information : Updates : Maple 2018 : Thermophysical Data
[フレーム] [フレーム]

Thermophysical Data and Scientific Constants

Introduction

The ThermophysicalData package

introduces the Chemicals subpackage, which gives the properties of an additional 2000 chemical species

and updates the CoolProp fluid properties engine to version 6.1

Additionally, the non-derived physical constants in the ScientificConstants package are updated to reflect those in the 2014 release of the CODATA Recommended Values of the Fundamental Physical Constants.

New Thermodynamic Data

Maple 2018 introduces the Chemicals subpackage. This uses a new data source* to give the thermodynamic properties of over 2000 gases, liquid and crystalline species.

* Bonnie J. McBride, Michael J. Zehe, and Sanford Gordon. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species; 2002; https://www.grc.nasa.gov/WWW/CEAWeb/TP-2002-21556.htm .

The data can be used to study

chemical equilibrium composition

reaction constants and spontaneity

rocket performance

flame temperatures

explosion and detonation pressures

and many more applications

>

restart:withThermophysicalData

Chemicals,CoolProp,PHTChart,Property,PsychrometricChart,TemperatureEntropyChart

(2.1)

Heat of formation and molar mass of gaseous CO2

>

Chemicals:-PropertyHeatOfFormation,CO2(g),useunits;Chemicals:-PropertyMolarMass,CO2(g),useunits;

393.51×103Jmol

44.01gmol

(2.2)

Enthalpy and entropy of gaseous CO2 at 300 K

>

Chemicals:-PropertyHmolar,CO2(g),temperature=300 K;Chemicals:-PropertySmolar,CO2(g),temperature=300 K;

393.44×103Jmol

214.02JmolK

(2.3)

See help for more detail, including a list of the species.

Application: Adiabatic Flame Temperature of Butane

Liquid butane is burnt with 100% theoretical air at an initial temperature of 298.15 K. The combustion reaction is

C4H10 (l) + 6.5 O2 (g)+ 24.44 N2 (g) → 4 CO2 (g) + 5 H2O (g) + 24.44 N2 (g)

Here, we will calculate the adiabatic flame temperature of the combustion products.

Heat of formation of butane

>

h_f_C4H10Chemicals:-PropertyHeatOfFormation,C4H10(l),n-buta,useunits

150.66kJmol

(2.1.1)

Enthalpies of the combustion products at a temperature T

>

h_N2Chemicals:-PropertyHmolar,N2(g),temperature=T:h_O2Chemicals:-PropertyHmolar,O2(g),temperature=T:h_H2OChemicals:-PropertyHmolar,H2O(g),temperature=T:h_CO2Chemicals:-PropertyHmolar,CO2(g),temperature=T:

Enthalpy of the reactants

>

H_reactants1mol h_f_C4H10

150.66kJ

(2.1.2)

Total enthalpy of the combustion products

>

H_products4 mol h_CO2+ 5 mol h_H2O+ 24.44 mol h_N2

H_products4Chemicals:−PropertyHmolar,CO2(g),temperature=Tmol+5Chemicals:−PropertyHmolar,H2O(g),temperature=Tmol+24.44Chemicals:−PropertyHmolar,N2(g),temperature=Tmol

(2.1.3)

Equating the enthalpy of the reactants and the enthalpy of the combustion products gives the adiabatic flame temperature

>

fsolveH_reactants=H_products,T=2000K

2379.85K

(2.1.4)

Application: Equilibrium Composition of the Combustion of Carbon Monoxide and Oxygen

One mole of CO and 0.5 moles of O2 are burned at 3000 K

CO (g) + 0.5 O2 (g) → CO2 (g)

The combustion products undergo dissociation and contain CO2, CO, O and O2. Here, we will calculate the equilibrium composition of the combustion products

Physical Properties

Enthalpies as a function of temperature

>

h_COChemicals:-PropertyHmolar,CO(g),temperature=T:h_CChemicals:-PropertyHmolar,C(gr),temperature=T:h_O2Chemicals:-PropertyHmolar,O2(g),temperature=T:h_OChemicals:-PropertyHmolar,O(g),temperature=T:h_CO2Chemicals:-PropertyHmolar,CO2(g),temperature=T:

Entropy as a function of temperature

>

s_COChemicals:-PropertySmolar,CO(g),temperature=T: s_CChemicals:-PropertySmolar,C(gr),temperature=T:s_O2Chemicals:-PropertySmolar,O2(g),temperature=T:s_OChemicals:-PropertySmolar,O(g),temperature=T:s_CO2Chemicals:-PropertySmolar,CO2(g),temperature=T:

Gibbs Free Energy as a function of temperature

>

G_CO Th_CO h_C+0.5 h_O2Ts_CO s_C+0.5 s_O2:G_CO2 Th_CO2 h_C+h_O2Ts_CO2s_C+s_O2:G_O2 T0:G_O Th_O 0.5h_O2Ts_O 0.5 s_O2:

Universal gas constant

>

R8.314 J mol1 K1:

Constraints

Balancing the reactants and products gives

CO + 0.5 O2 = n1 CO2 + n2 CO + n3 O + n4 O2

This results in the following constraint on the oxygen atoms...

>

con12n1+n2+n3+2n4=2 mol:

...and this constraint on the carbon atoms

>

con2n1+n2=1 mol:

Total number of moles in products

>

ntn1+n2+n3+n4:

Equilibrium Composition

For a given temperature, minimizing the Gibbs Free Energy of the combustion products will give the equilibrium molar composition

>

gibbsn1G_CO2T+RTlnn1nt+n2G_COT+RTlnn2nt+n3G_OT+RTlnn3nt+n4G_O2T+RTlnn4nt:

>

resOptimization:-Minimizeevalgibbs,T=3000K,con1,con2,n10.0001 mol,n20.0001 mol,n30.0001 mol,n40.0001 mol

4.16167796100690844105J,n1=0.545813996336248mol,n2=0.454186003663752mol,n3=0.0565244627353324mol,n4=0.198830770464210mol

(2.2.3.1)

Updated CoolProp Library

Maple 2018 updates the CoolProp library to version 6.1. This includes new fluids and updated routines used to calculate fluid properties.

New fluids include Dichloroethane, DiethylEther, EthyleneOxide, HydrogenChloride, Novec 649TM and several others.

>

Propertyenthalpy,R245ca,temperature=298K,pressure=1atm

233.86kJkg

(3.1)
>

PropertyPcrit,DiethylEther, useunits

3.649MPa

(3.2)

Updated ScientificConstants Package

The non-derived physical constants in the ScientificConstants package now reflect the most recent values published by CODATA.

>

withScientificConstants

AddConstant,AddElement,AddProperty,Constant,Element,GetConstant,GetConstants,GetElement,GetElements,GetError,GetIsotopes,GetProperties,GetProperty,GetUnit,GetValue,HasConstant,HasElement,HasProperty,ModifyConstant,ModifyElement

(4.1)
>

GetConstantG

Newtonian_constant_of_gravitation,symbol=G,value=6.6740810−11,uncertainty=3.110−15,units=m3kgs2

(4.2)
>

Applications

Theoretical Rocket Performance

Rich and Lean Octane Combustion

Equilibrium Composition and Flame Temperature of the Combustion of Carbon Monoxide

Deflagration Pressure of the Combustion of Hydrogen in Air at Constant Volume


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /