Close
Close window
pochhammer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

pochhammer

general pochhammer function

Calling Sequence

pochhammer(z, a)

Parameters

z

-

expression

a

-

expression

Description

The pochhammer symbol is defined for a positive integer n and complex number z as

pochhammerz,n=zz+1...z+n1

This is extended analytically to complex n by using the formula

pochhammerz,a=Γz+aΓz

At all points z,a such that z and z+a are positive integers, this is equivalent to:

pochhammerz,a=limt0Γz+a+tΓz+t

In the case that z is a non-positive integer, pochhammer(z,a) is defined by this limit.

In the case that both z and z+a are non-positive integers, Maple also signals the invalid_operation numeric event, allowing the user to control this singular behavior by catching the event. See numeric_events for more information.

Examples

>

pochhammer5,3

210

(1)
>

pochhammerz,2

pochhammerz,2

(2)
>

pochhammerz,3

1pochhammer3+z,3

(3)
>

pochhammer2,I

Γ2+I

(4)
>

NumericStatusinvalid_operation=false:

>

pochhammer3,2

6

(5)
>

NumericStatusinvalid_operation=false

invalid_operation=true

(6)
>

pochhammer0,0

1

(7)
>

NumericStatusinvalid_operation

true

(8)
>

diffpochhammera,x,x

pochhammera,xΨx+a

(9)
>

diffpochhammera,x,a

pochhammera,xΨx+aΨa

(10)
>

seriespochhammera,x,x,3

1+Ψax+Ψ1,a2+Ψa22x2+Ox3

(11)
>

pochhammerx,5

pochhammerx,5

(12)
>

expand

x5+10x4+35x3+50x2+24x

(13)
>

pochhammer2,13

8π327Γ23

(14)
>

evalf

1.190639350

(15)
>

pochhammer3.7+2.2I,1.5+2.7I

−0.0005620896042+0.01961129135I

(16)
>

convertpochhammera,x,Γ

Γx+aΓa

(17)
>

convertpochhammera,x,binomial

a+x1a1x!

(18)
>

convertpochhammera,x,factorial

a+x1!a1!

(19)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /