Close
Close window
Slode - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

The Slode Package

The Slode package contains functions to find formal power series solutions of linear ordinary differential equations (LODEs), to determine points for some special series solutions (hypergeometric, rational, polynomial, and sparse series).

>

restart

>

withSlode:

Create a LODEstruct Structure from a LODE

DEdetermine - Check a LODE and create the LODEstruct structure

>

ode:=ⅆⅆxyxx1yx=0

ode:=ⅆⅆxyxx1yx=0

(1.1)
>

DEdetermineode,yx

LODEstructⅆⅆxyxx1yx=0,yx

(1.2)

Create Formal Power/Taylor Series Solutions

FPseries - Create formal power series solutions

>

ode:=3x26x+3ⅆⅆxⅆⅆxyx+12x12ⅆⅆxyx+6yx

ode:=3x26x+3ⅆ2ⅆx2yx+12x12ⅆⅆxyx+6yx

(2.1)
>

FPseriesode,yx,vn

FPSstruct_C0+_C1x+n=2∞vnxn,n2nvn+2n2+2nvn1+n2nvn2

(2.2)

FTseries - Create formal Taylor series solutions

>

FTseriesode,yx,vn,0,_A,2

FPSstruct_A0+_A1x+122_A0+4_A1x2+n=3∞vnxnn!,vn2nvn1+n2nvn2

(2.3)

Determine Candidate Points for Some Special Series Solutions

candidate_points - Determine candidate points for hypergeometric, rational and polynomial power series solutions of homogeneous LODEs with polynomial coefficients

>

ode:=3x26x+3ⅆⅆxⅆⅆxyx+12x12ⅆⅆxyx+6yx

ode:=3x26x+3ⅆ2ⅆx2yx+12x12ⅆⅆxyx+6yx

(3.1)
>

candidate_pointsode,yx,'polynomial'

0

(3.2)
>

candidate_pointsode,yx,'rational'

1

(3.3)
>

candidate_pointsode,yx,'hypergeom'

1,any_ordinary_point

(3.4)

candidate_mpoints - Determine mpoints for m-sparse power series

>

ode:=2+x2ⅆ3ⅆx3yx2ⅆ2ⅆx2yxx+2+x2ⅆⅆxyx2xyx

ode:=2+x2ⅆ3ⅆx3yx2ⅆ2ⅆx2yxx+2+x2ⅆⅆxyx2xyx

(3.5)
>

candidate_mpointsode,yx

2,LODEstructyx+ⅆ2ⅆx2yx,yx,0

(3.6)

candidate_mpoints/irreducible - Use a much faster algorithm that returns all m-points if the equation is irreducible

>

ode:=ⅆ2ⅆx2yx+x1yx

ode:=ⅆ2ⅆx2yx+x1yx

(3.7)
>

candidate_mpointsode,yx,'irreducible'

3,LODEstructyx,yx,1

(3.8)

Find Formal Power Series Solutions

polynomial_series_sol - Find formal power series solutions with polynomial coefficients

>

ode:=3x26x+3ⅆⅆxⅆⅆxyx+12x12ⅆⅆxyx+6yx

ode:=3x26x+3ⅆ2ⅆx2yx+12x12ⅆⅆxyx+6yx

(4.1)
>

polynomial_series_solode,yx

n=0∞_C0+n_C1xn

(4.2)

rational_series_sol - Find formal power series solutions with rational coefficients

>

ode:=3xⅆⅆxⅆⅆxyxⅆⅆxyx

ode:=3xⅆ2ⅆx2yxⅆⅆxyx

(4.3)
>

rational_series_solode,yx

_C1+_C0n=1∞x2nn

(4.4)

hypergeom_series_sol - Find formal power series solutions with hypergeometric coefficients

>

ode:=2xx1ⅆⅆxⅆⅆxyx+7x3ⅆⅆxyx+2yx=0

ode:=2xx1ⅆ2ⅆx2yx+7x3ⅆⅆxyx+2yx=0

(4.5)
>

hypergeom_series_solode,yx

_C1n=0∞n+1xn2n+1,_C1n=0∞1nΓn+12x1nΓn+1,_C1n=0∞Γn+12x+1nn!

(4.6)

msparse_series_sol - Find formal m-sparse power series solutions

>

ode:=2x32x23+1x9ⅆ3ⅆx3yx9+29x24x+13ⅆ2ⅆx2yx9+218x4ⅆⅆxyx9+4yx3

ode:=192x343x2+29xⅆ3ⅆx3yx+1918x28x+23ⅆ2ⅆx2yx+1936x8ⅆⅆxyx+43yx

(4.7)
>

msparse_series_solode,yx,vn

FPSstruct136_C2+_C2x162+36_C2x164+n=3∞v2nx162n,36v2n2+v2n,FPSstruct_C1x16+36_C1x163+1296_C1x165+n=3∞v2n+1x162n+1,36v2n1+v2n+1

(4.8)

mhypergeom_series_sol - Find formal m-sparse m-hypergeometric power series

>

ode:=ⅆ2ⅆx2yx+x1yx

ode:=ⅆ2ⅆx2yx+x1yx

(4.9)
>

mhypergeom_series_solode,yx

_C1n=0∞19nx13n+1Γn+1Γn+43,_C1n=0∞19nx13nΓn+23Γn+1

(4.10)

hypergeom_formal_sol - Find formal solutions with hypergeometric series

>

ode:=3xyx+4+4xxⅆⅆxyx+33xx2ⅆ2ⅆx2yx

ode:=3xyx+4+4xxⅆⅆxyx+33xx2ⅆ2ⅆx2yx

(4.11)
>

hypergeom_formal_solode,yx,t,0

xt=t,yt=94Γ23n=0∞1n+1Γn76+1685Γn761685tnΓn43Γn+1Γ16+1685Γ161685,xt=t,yt=5681t7/33πn=0∞1n+1Γn+76+1685Γn+761685tnΓn+103Γn+1Γ136+1685Γ1361685Γ23

(4.12)

References

Abramov, S. "m-Sparse Solutions of Linear Ordinary Differential Equations with Polynomial Coefficients." Discrete Math., Vol. 217, (2000): 3-15.

Abramov, S. "Power Series Solutions with "Eventually Nice" Coefficients of Linear Ordinary Differential Equations." Proc. FPSAC'98. 1998.

Abramov, S. "Solutions of linear differential equations in the class of sparse power series." Proc. FPSAC'97, pp. 1-10. 1997.

Abramov, S.; Bronstein, M.; and Petkovsek, M. "On Polynomial Solutions of Linear Operator Equations." Proceedings of ISSAC '95. 1995.

Abramov, S., and Petkovsek, M. "Special Power Series Solutions Of Linear Differential Equations." Proceedings of FPSAC'96. 1996

Petkovsek, M., and Salvy, B. "Finding all hypergeometric solutions of linear differential equations." Proceedings of ISSAC '93. 1993

Return to Index of Example Worksheets


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /