Close
Close window
mellin - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Mellin/Inverse Mellin Transforms (inttrans Package)

>

restart

>

withinttrans:

Introduction

The Mellin and Inverse Mellin transforms mellin and invmellin are part of the inttrans package. The Mellin transform is closely related to the Laplace and Fourier transforms and has applications in many areas, including:

digital data structures

probabilistic algorithms

asymptotics of Gamma-related functions

coefficients of Dirichlet series

asymptotic estimation of integral forms

asymptotic analysis of algorithms

communication theory

The Mellin transform, as a function Ms of s, of a function mx of x, is defined by the integral

Ms=0mxxs1ⅆx

The Inverse Mellin transform is defined by the contour integral

Fs=1πIIc+Ic+fttsⅆt2

for a function ft of t.

Simple Examples

Here are a few examples of invmellin, the inverse Mellin transform, in action.

>

j23+I

j:=23+I

(2.1)
>

invmellinasj+s2,s,x

∫0∞_U13+Iinvmellinas,s,x_Uinvmellin1s2,s,_U,∞..∞ⅆ_U

(2.2)


Try an assumption on a:

>

assume0<a

>

invmellinasj&plus;s2&comma;s&comma;x

invmellin9&ExponentialE;slna~2&plus;3I&plus;3s2&comma;s&comma;x

(2.3)


Try changing the range:

>

invmellinasj&plus;s2&comma;s&comma;x&comma;&infin;..1

Heavisidexa~xa~23&plus;Ilnxa~

(2.4)

In the above, we see that the correct assumptions on parameters and the correct range must be specified for the inverse Mellin transform.


Continuing with another example:

>

invmellin&gamma;&plus;&Psi;1&plus;ss&comma;s&comma;x&comma;1..&infin;

Heaviside1xln1x

(2.5)


Check to see that the Mellin transform of this is our original expression:

>

mellin%&comma;x&comma;s

&gamma;&plus;&Psi;1&plus;ss

(2.6)

Further Examples

The following is an example of a Mellin transform which does not simplify:

>

mellinHeaviside1xsin2x1x1x2&comma;x&comma;s

&pi;BesselI12s&comma;2BesselK12s12&comma;2

(3.1)

We try taking the inverse Mellin transform of this, with the valid range, and check to see that we get the original function:

>

invmellin&comma;s&comma;x&comma;1..&infin;

Heaviside1xsin2x2x1x2

(3.2)


The mellin and invmellin functions can also handle the Whittaker functions:

>

invmellin2sWhittakerW13s&comma;s&comma;2&comma;s&comma;x

14Heaviside1x2&Gamma;56&ExponentialE;2x&pi;1x2&sol;3

(3.3)
>

mellinexp3&ast;x&ast;WhittakerM5&comma;1&sol;2&comma;2&ast;x&comma;x&comma;s

2&Gamma;1&plus;s21shypergeom6&comma;1&plus;s&comma;2&comma;1

(3.4)


Try some general formulae:

>

mellininvmellinfx&comma;x&comma;s&comma;s&comma;x

fx

(3.5)
>

invmellinmellinfx&comma;x&comma;s&comma;s&comma;x

fx

(3.6)
>

mellinfax&comma;x&comma;s

1a~smellinfx&comma;x&comma;s

(3.7)
>

invmellinfx&plus;a&comma;x&comma;s

sa~invmellinfx&comma;x&comma;s

(3.8)
>

For more information, see the following help pages: Mellin , Inverse Mellin , inttrans package, Laplace transform, and Fourier transform.

Return to Index for Example Worksheets


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /