Close
Close window
stirling1 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Stirling1

computes the Stirling numbers of the first kind

Calling Sequence

Stirling1(n, m)

combinat[stirling1](n, m)

Parameters

n, m

-

integers

Description

The Stirling1(n,m) command computes the Stirling numbers of the first kind using the (implicit) generating function

m=0nStirling1n,mxm=−1n+1ΓnxΓx=xx1...xn+1

Instead of Stirling1 you can also use the synonym combinat[stirling1].

Regarding combinatorial functions, 1nmStirling1n,m is the number of permutations of n symbols that have exactly m cycles. The Stirling numbers also enter binomial series, Mathieu function formulas, and are relevant in physical applications.

The Stirling numbers of the first kind can be expressed as an explicit Sum with the Stirling numbers of second kind in the coefficients:

Stirling1n,m=k=0nm−1kn1+knm+k2nmnmkStirling2nm+k,k

Since the Stirling numbers of the second kind also admit an explicit Sum representation,

Stirling2m,n=k=0nnkkmn!−1kn

then, an explicit double Sum representation for Stirling1 is possible by combining the two formulas above. (See the Examples section.)

Examples

Stirling1 only evaluates to a number when m and n are positive integers

>

Stirling1m,n

Stirling1m,n

(1)
>

=convert,Sum

Stirling1m,n=_k1=0mn_k2=0_k1−12_k1_k2m1+_k1mn+_k12mnmn_k1_k1_k2_k2mn+_k1_k1!

(2)
>

eval,m=10,n=5

−269325=_k1=05_k2=0_k1−12_k1_k29+_k15+_k1155_k1_k1_k2_k25+_k1_k1!

(3)
>

value

−269325=−269325

(4)

See Also


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /