Close
Close window
ProbabilityDensityFunction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Statistics

ProbabilityDensityFunction

compute the probability density function

Calling Sequence

ProbabilityDensityFunction(X, t, options)

PDF(X, t, options)

Parameters

X

-

algebraic; random variable or distribution

t

-

algebraic; point

options

-

(optional) equations; specify options for computing the probability density function of a random variable

Description

The ProbabilityDensityFunction function computes the probability density function of the specified random variable at the specified point.

The first parameter can be a distribution (see Statistics[Distribution] ), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable] ).

Computation

By default, all computations involving random variables are performed symbolically (see option numeric below).

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Options

The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

numeric=truefalse -- By default, the probability density function is computed using exact arithmetic. To compute the probability density function numerically, specify the numeric or numeric = true option.

inert=truefalse -- By default, Maple evaluates integrals, sums, derivatives and limits encountered while computing the PDF. By specifying inert or inert=true, Maple will return these unevaluated.

mainbranch - returns the main branch of the distribution only.

Examples

>

withStatistics:

Compute the probability density function of the beta distribution with parameters p and q.

>

ProbabilityDensityFunctionΒp,q,t

0t<0tp11tq1Βp&comma;qt<10otherwise

(1)

Use numeric parameters.

>

ProbabilityDensityFunctionΒ3&comma;5&comma;12

10564

(2)
>

ProbabilityDensityFunctionΒ3&comma;5&comma;12&comma;numeric

1.640625000

(3)

Define new distribution.

>

TDistribution`=`PDF&comma;t1πt2+1&colon;

>

XRandomVariableT&colon;

>

PDFX&comma;u

1πu2+1

(4)
>

PDFX&comma;0

1π

(5)
>

CDFX&comma;u

π+2arctanu2π

(6)

Use the inert option with a new RandomVariable, Y.

>

YRandomVariableDistribution`=`CDF&comma;uπ+2arctanu2π

Y_R3

(7)
>

PDFY&comma;t

1t2+1π

(8)
>

PDFY&comma;t&comma;inert

&DifferentialD;&DifferentialD;tπ+2arctant2π

(9)

References

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /