Close
Close window
Mean - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Statistics

Mean

compute the arithmetic mean

Calling Sequence

Mean(A, ds_options)

Mean(M, ds_options)

Mean(X, rv_options)

Parameters

X

-

algebraic; random variable or distribution

ds_options

-

(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the mean of a data set

rv_options

-

(optional) equation of the form numeric=value; specifies options for computing the mean of a random variable

Description

The Mean function computes the arithmetic mean of the specified random variable or data set.

The first parameter can be a data set (e.g., a Vector ), a Matrix data set , a distribution (see Statistics[Distribution] ), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable] ).

Computation

By default, all computations involving random variables are performed symbolically (see option numeric below).

All computations involving data are performed in floating-point; therefore, all data provided must have type[realcons] and all returned solutions are floating-point, even if the problem is specified with exact values.

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Data Set Options

The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.

ignore=truefalse -- This option controls how missing data is handled by the Mean command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the Mean command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.

weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.

Random Variable Options

The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

numeric=truefalse -- By default, the mean is computed using exact arithmetic. To compute the mean numerically, specify the numeric or numeric = true option.

Examples

>

withStatistics:

Compute the mean of the beta distribution with parameters p and q.

>

MeanΒp,q

pp+q

(1)

Use numeric parameters.

>

MeanΒ3,5

38

(2)
>

MeanΒ3,5,numeric

0.3750000000

(3)

Generate a random sample of size 100000 drawn from the above distribution and compute the sample mean.

>

ASampleΒ3,5,105:

>

MeanA

0.374552146221966

(4)

Compute the standard error of the sample mean for the normal distribution with parameters 5 and 2.

>

XNormal5,2

XNormal5,2

(5)
>

BSampleX,106:

>

MeanX,StandardErrorMean,X,samplesize=106

5,1500

(6)
>

MeanB

4.99767796589286

(7)

Create a beta-distributed random variable Y and compute the mean of 1Y+2.

>

YRandomVariableΒ5,2:

>

Mean1Y+2

116721440ln2+1440ln3

(8)
>

Mean1Y+2,numeric

0.3697556758

(9)

Verify this using simulation.

>

CSample1Y+2,105:

>

MeanC

0.369733204929286

(10)

Compute the mean of a weighted data set.

>

Vseqi,i=57..77,undefined:

>

W2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:

>

MeanV,weights=W

Floatundefined

(11)
>

MeanV,weights=W,ignore=true

67.0208503203261

(12)

Consider the following Matrix data set .

>

MMatrix3,1130,114694,4,1527,127368,3,907,88464,2,878,96484,4,995,128007

M31130114694415271273683907884642878964844995128007

(13)

We compute the mean of each of the columns.

>

MeanM

3.200000000000001087.40000000000111003.400000000

(14)

References

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

The M parameter was introduced in Maple 16.

For more information on Maple 16 changes, see Updates in Maple 16 .


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /