Close
Close window
InterquartileRange - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Statistics

InterquartileRange

compute the interquartile range

Calling Sequence

InterquartileRange(A, ds_options)

InterquartileRange(M, ds_options)

InterquartileRange(X, rv_options)

Parameters

X

-

algebraic; random variable or distribution

ds_options

-

(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the interquartile range of a data set

rv_options

-

(optional) equation of the form numeric=value; specifies options for computing the interquartile range of a random variable

Description

The InterquartileRange function computes the interquartile range of the specified random variable or data set.

The first parameter can be a data set (e.g., a Vector ), a Matrix data set , a distribution (see Statistics[Distribution] ), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable] ).

Computation

By default, all computations involving random variables are performed symbolically (see option numeric below).

All computations involving data are performed in floating-point; therefore, all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Data Set Options

The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.

ignore=truefalse -- This option controls how missing data is handled by the InterquartileRange command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the InterquartileRange command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.

weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.

Random Variable Options

The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

numeric=truefalse -- By default, the interquartile range is computed symbolically. To compute the interquartile range numerically, specify the numeric or numeric = true option.

Examples

>

withStatistics:

Compute the average absolute range from the interquartile of the Rayleigh distribution with parameter 3.

>

InterquartileRangeRayleigh3

36ln218ln34

(1)
>

InterquartileRangeRayleigh3,numeric

2.71974481762339

(2)

Generate a random sample of size 100000 drawn from the above distribution and compute the sample interquartile range.

>

ASampleRayleigh3,105:

>

InterquartileRangeA

2.72287155374363

(3)

Compute the standard error of the interquartile range for the normal distribution with parameters 5 and 2.

>

XRandomVariableNormal5,2:

>

BSampleX,106:

>

InterquartileRangeX,StandardErrorInterquartileRange,X,samplesize=106

52+4RootOf2erf_Z12252+4RootOf2erf_Z+122,6πⅇ52+4RootOf2erf_Z1225282+6πⅇ52+4RootOf2erf_Z+12252824πⅇ52+4RootOf2erf_Z122528ⅇ52+4RootOf2erf_Z+1225282000

(4)
>

InterquartileRangeX,numeric,StandardErrorInterquartileRange,X,samplesize=106,numeric

2.69795900078510,0.00314686508165807

(5)
>

InterquartileRangeB,StandardErrorInterquartileRange,B

2.70027487505199,0.00314822096661433693

(6)

Compute the interquartile range of a weighted data set.

>

Vseqi,i=57..77,undefined:

>

W2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:

>

InterquartileRangeV,weights=W

3.54768681570400

(7)
>

InterquartileRangeV,weights=W,ignore=true

3.54776903409704

(8)

Consider the following Matrix data set .

>

MMatrix3,1130,114694,4,1527,127368,3,907,88464,2,878,96484,4,995,128007

M31130114694415271273683907884642878964844995128007

(9)

We compute the interquartile range of each of the columns.

>

InterquartileRangeM

1.33333333333333365.00000000000033770.3333333333

(10)

References

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

The M parameter was introduced in Maple 16.

For more information on Maple 16 changes, see Updates in Maple 16 .


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /