Close
Close window
Cauchy - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Statistics[Distributions]

Cauchy

Cauchy distribution

Calling Sequence

Cauchy(a, b)

CauchyDistribution(a, b)

Parameters

a

-

location parameter

b

-

scale parameter

Description

The Cauchy distribution is a continuous probability distribution with probability density function given by:

ft=1πb1+ta2b2

subject to the following conditions:

a::real,0<b

The Cauchy distribution does not have any defined moments or cumulants.

The Cauchy variate Cauchy(a,b) is related to the standardized variate Cauchy(0,1) by Cauchy(a,b) ~ a + b * Cauchy(0,1).

The ratio of two independent unit Normal variates N and M is distributed according to the standard Cauchy variate: Cauchy(0,1) ~ N / M

The standard Cauchy variate Cauchy(0,1) is a special case of the StudentT variate with one degree of freedom: Cauchy(0,1) ~ StudentT(1).

Note that the Cauchy command is inert and should be used in combination with the RandomVariable command.

Examples

>

withStatistics&colon;

>

XRandomVariableCauchya&comma;b&colon;

>

PDFX&comma;u

1πb1+ua2b2

(1)
>

PDFX&comma;0.5

0.3183098861b1.+0.51.a2b2

(2)
>

MeanX

undefined

(3)
>

VarianceX

undefined

(4)

References

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics.6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /