Close
Close window
CumulativeDistributionFunction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Statistics

CumulativeDistributionFunction

compute the cumulative distribution function

Calling Sequence

CumulativeDistributionFunction(X, t, options)

CDF(X, t, options)

Parameters

X

-

algebraic; random variable or distribution

t

-

algebraic; point

options

-

(optional) equation(s) of the form numeric=value or inert=value; specifies options for computing the cumulative distribution function of a random variable

Description

The CumulativeDistributionFunction function computes the cumulative distribution function of the specified random variable at the specified point.

The first parameter can be a distribution (see Statistics[Distribution] ), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable] ).

The inverse function of the CDF is the Quantile .

Computation

By default, all computations involving random variables are performed symbolically (see option numeric below).

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Options

The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

numeric=truefalse -- By default, the cumulative distribution function is computed using exact arithmetic. To compute the cumulative distribution function numerically, specify the numeric or numeric=true option.

inert=truefalse -- By default, Maple evaluates integrals, sums, derivatives and limits encountered while computing the CDF. By specifying inert or inert=true, Maple will return these unevaluated.

Examples

>

withStatistics:

Compute the cumulative distribution function of the beta distribution with parameters p and q.

>

CumulativeDistributionFunctionΒp,q,t

0t<0tphypergeomp&comma;1q&comma;1+p&comma;tΒp&comma;qpt<11otherwise

(1)

Use numeric parameters.

>

CumulativeDistributionFunctionΒ3&comma;5&comma;12

35hypergeom−4&comma;3&comma;4&comma;128

(2)
>

CumulativeDistributionFunctionΒ3&comma;5&comma;12&comma;numeric

0.773437500000000

(3)

Define new distribution.

>

TDistribution`=`PDF&comma;t1π1+t2&colon;

>

XRandomVariableT&colon;

>

CDFX&comma;0

12

(4)
>

CDFX&comma;0&comma;numeric

0.4999999999

(5)
>

CDFX&comma;u

π+2arctanu2π

(6)

Use the inert option.

>

CDFX&comma;0&comma;inert=true

01π_t2+1&DifferentialD;_t

(7)
>

CDFX&comma;t&comma;inert=true

t1π_t02+1&DifferentialD;_t0

(8)
>

NRandomVariableNormal0&comma;1&colon;

>

CDFN&comma;t&comma;inert=true

t2&ExponentialE;_t1222π&DifferentialD;_t1

(9)

References

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /