Statistics
CumulativeDistributionFunction
compute the cumulative distribution function
Calling Sequence
Parameters
Description
Computation
Options
Examples
References
CumulativeDistributionFunction(X, t, options)
CDF(X, t, options)
X
-
algebraic; random variable or distribution
t
algebraic; point
options
(optional) equation(s) of the form numeric=value or inert=value; specifies options for computing the cumulative distribution function of a random variable
The CumulativeDistributionFunction function computes the cumulative distribution function of the specified random variable at the specified point.
The first parameter can be a distribution (see Statistics[Distribution] ), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable] ).
The inverse function of the CDF is the Quantile .
By default, all computations involving random variables are performed symbolically (see option numeric below).
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the cumulative distribution function is computed using exact arithmetic. To compute the cumulative distribution function numerically, specify the numeric or numeric=true option.
inert=truefalse -- By default, Maple evaluates integrals, sums, derivatives and limits encountered while computing the CDF. By specifying inert or inert=true, Maple will return these unevaluated.
with⁡Statistics:
Compute the cumulative distribution function of the beta distribution with parameters p and q.
CumulativeDistributionFunction⁡Β⁡p,q,t
0t<0tp⁢hypergeom⁡p,1−q,1+p,tΒ⁡p,q⁢pt<11otherwise
Use numeric parameters.
CumulativeDistributionFunction⁡Β⁡3,5,12
35⁢hypergeom⁡−4,3,4,128
CumulativeDistributionFunction⁡Β⁡3,5,12,numeric
0.773437500000000
Define new distribution.
T≔Distribution⁡`=`⁡PDF,t↦1π⋅1+t2:
X≔RandomVariable⁡T:
CDF⁡X,0
12
CDF⁡X,0,numeric
0.4999999999
CDF⁡X,u
π+2⁢arctan⁡u2⁢π
Use the inert option.
CDF⁡X,0,inert=true
∫−∞01π⁢_t2+1ⅆ_t
CDF⁡X,t,inert=true
∫−∞t1π⁢_t02+1ⅆ_t0
N≔RandomVariable⁡Normal⁡0,1:
CDF⁡N,t,inert=true
∫−∞t2⁢ⅇ−_t1222⁢πⅆ_t1
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics[Computation]
Statistics[Distributions]
Statistics[Quantile]
Statistics[RandomVariables]
Download Help Document
AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル