Close
Close window
Psi - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Psi

the Digamma and Polygamma functions

Calling Sequence

Psi(x)

Ψx

Psi(n,x)

Ψn,x

Parameters

x

-

expression

n

-

expression

Description

Psi(x) is the digamma function,

Ψx=ⅆⅆxlnΓx=ⅆⅆxΓxΓx

Psi(n, x) is the nth polygamma function, which is the nth derivative of the digamma function when n is a nonnegative integer.

You can enter the command Psi using either the 1-D or 2-D calling sequence.

If n is an integer greater than one, Psi(n) + gamma is a rational number. (gamma is Euler's constant.) For small values of n, Psi(n) computes as a sum of gamma and a rational number. To perform this computation for larger values of n, use expand .

Ψn,x=ⅆnⅆxnΨx

Ψ0,x=Ψx

Psi(n, x) is extended to complex n, including negative integer indices, by the balanced polygamma formula of Espinosa and Moll

Ψw,z=ζ1w+1,z+γ+Ψwζ0w+1,zΓw

where Ζ is the Hurwitz zeta function.

Examples

>

Ψ2

1γ

(1)
>

Ψ1,2

1+π26

(2)
>

Ψ3.5+4.7I

1.717883835+1.001470255I

(3)
>

Ψ7,2.2+3.3I

−0.02713341434+0.003825068416I

(4)
>

Ψ2,1.543

−0.7957394716

(5)
>

Ψ1.342+I,3.5233

−0.69889190050.7978763419I

(6)
>

Ψ50

138812566871391350266313099044504245996706400γ

(7)
>

Ψ51

Ψ51

(8)

Evaluating Psi(51) directly is faster than expanding and then evaluating.

>

expandΨ51

γ+139432375772240549607593099044504245996706400

(9)
>

evalf

3.921989673

(10)
>

evalfΨ51

3.921989673

(11)

Unlike the negapolygamma of Gosper, the balanced polygamma at n=−1 differs from lnGAMMA by a constant

>

convertlnGAMMAx,ΨΨ1,x

ln2π2

(12)

References

Espinosa, O., and Moll, V. "A Generalized Polygamma Function." Integral Transforms and Special Functions, (April 2004): 101-115.


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /