Close
Close window
PoissonProcess - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

Finance

PoissonProcess

create new Poisson process

Calling Sequence

PoissonProcess(lambda)

PoissonProcess(lambda, X)

Parameters

lambda

-

algebraic expression; intensity parameter

X

-

algebraic expression; jump size distribution

Description

A Poisson process with intensity parameter 0<λt, where λt is a deterministic function of time, is a stochastic process N with independent increments such that N0=0 and

PrNt+hNt=1|Nt&equals;lambdath&plus;oh

for all 0t. If the intensity parameter λt itself is stochastic, the corresponding process is called a doubly stochastic Poisson process or Cox process.

A compound Poisson process is a stochastic process Jt of the form Jt=i=1NtYi, where Nt is a standard Poisson process and Yi are independent and identically distributed random variables. A compound Cox process is defined in a similar way.

The parameter lambda is the intensity. It can be constant or time-dependent. It can also be a function of other stochastic variables, in which case the so-called doubly stochastic Poisson process (or Cox process) will be created.

The parameter X is the jump size distribution. The value of X can be a distribution, a random variable or any algebraic expression involving random variables.

If called with one parameter, the PoissonProcess command creates a standard Poisson or Cox process with the specified intensity parameter.

Examples

>

withFinance&colon;

>

JPoissonProcess1.0&colon;

>

PathPlotJt&comma;t=0..3&comma;timesteps=50&comma;replications=20&comma;thickness=3&comma;color=red..blue&comma;axes=BOXED&comma;gridlines=true&comma;markers=false

Create a subordinated Wiener process with J as a subordinator.

>

WWienerProcessJ&colon;

>

PathPlotWt&comma;t=0..3&comma;timesteps=20&comma;replications=10&comma;markers=false&comma;color=red..blue&comma;thickness=3&comma;gridlines=true&comma;axes=BOXED

Next define a compound Poisson process.

>

YStatisticsRandomVariableNormal0.3&comma;0.5&colon;

>

λ0.5

λ0.5

(1)
>

XPoissonProcessλ&comma;Y&colon;

>

PathPlotXt&comma;t=0..3&comma;timesteps=20&comma;replications=10&comma;markers=false&comma;color=red..blue&comma;thickness=3&comma;gridlines=true&comma;axes=BOXED

Compute the expected value of XT for T=3 and verify that this is approximately equal to λT times the expected value of Y.

>

T3

T3

(2)
>

ExpectedValueXT&comma;replications=104&comma;timesteps=100

value=0.4435146732&comma;standarderror=0.007164725012

(3)
>

λTStatisticsExpectedValueY

0.45

(4)

Here is an example of a doubly stochastic Poisson process for which the intensity parameter evolves as a square-root diffusion.

>

κ0.354201

κ0.354201

(5)
>

μ1.21853

μ1.21853

(6)
>

ν0.538186

ν0.538186

(7)
>

y01.81

y01.81

(8)
>

ySquareRootDiffusiony0&comma;κ&comma;μ&comma;ν&colon;

>

JPoissonProcessyt&colon;

>

PathPlotyt&comma;t=0..3&comma;timesteps=100&comma;replications=10&comma;thickness=3&comma;color=red..blue&comma;axes=BOXED&comma;gridlines=true

>

PathPlotJt&comma;t=0..3&comma;timesteps=100&comma;replications=10&comma;thickness=3&comma;color=red..blue&comma;axes=BOXED&comma;gridlines=true

References

Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.

Compatibility

The Finance[PoissonProcess] command was introduced in Maple 15.

For more information on Maple 15 changes, see Updates in Maple 15 .


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /