Cotangent of the angle is ratio of the ajacent leg to opposite one.
Cotangent is π periodic function defined everywhere on real axis, except its singular points πn, where n = 0, ±1, ±2, ... — so, function domain is (πn, π(n + 1)), n∈N. Its graph is depicted below — fig. 1.
[画像:Fig. 1. Graph y = cot x.] Fig. 1. Graph of the cotangent function y = cotx.Function codomain is entire real axis.
Base:
csc2φ − cot2φ = 1and its consequences:
cotφ = ±√(1 − sin2φ) /sinφBy definition:
cotφ ≡ cosφ /sinφ ≡ 1 /tanφProperties — symmetry, periodicity, etc.:
cot−φ = −cotφHalf-angle:
cot(φ/2) = ±√[(1 + cosφ) /(1 − cosφ)]Double angle:
cot(2φ) = (cot2φ − 1) /(2 cotφ)Triple-angle:
cot(3φ) = (3 cot2φ − cot3φ) /(1 − 3 cot2φ)Quadruple-angle:
cot(4φ) = (1 + cot4φ − 6 cot2φ) /(4 cot3φ − 4 cotφ)Power reduction:
cot2φ = [1 + cos(2φ)] /[1 − cos(2φ)] cot3φ = [3 cosφ + cos(3φ)] /[3 sinφ − sin(3φ)] cot4φ = [3 + 4 cos(2φ) + cos(4φ)] /[3 − 4 cos(2φ) + cos(4φ)] cot5φ = [10 cosφ + 5 cos(3φ) + cos(5φ)] /[10 sinφ − 5 sin(3φ) + sin(5φ)]Sum and difference of angles:
cot(φ + ψ) = (cotφ cotψ − 1) /(cotφ + cotψ)Product:
cotφ cotψ = [cos(φ − ψ) + cos(φ + ψ)] /[cos(φ − ψ) − cos(φ + ψ)] tanφ cotψ = [sin(φ + ψ) + sin(φ − ψ)] /[sin(φ + ψ) − sin(φ − ψ)]Sum:
cotφ + cotψ = sin(φ + ψ) /(sinφ sinψ)Cotangent of inverse functions:
cot(arccot x) ≡ xSome angles:
| Angle φ | Value cotφ |
|---|---|
| π/12 | 2 + √3 |
| π/10 | √(5 + 2 √5) |
| π/8 | √2 + 1 |
| π/6 | √3 |
| π/5 | √(1 + 2 /√5) |
| π/4 | 1 |
| 3π/10 | √(5 − 2 √5) |
| π/3 | √3 /3 |
| 3π/8 | √2 − 1 |
| 2π/5 | √(1 − 2 /√5) |
| 5π/12 | 2 − √3 |
| π/2 | 0 |
Cotangent derivative:
cot′x = −csc2x ≡ −1 /sin2xIndefinite integral of the cotangent:
∫ cotx dx = ln|sinx| + Cwhere C is an arbitrary constant.
To calculate cotangent of the number:
cot(−1);To get cotangent of the complex number:
cot(−1+i);To get cotangent of the current result:
cot(rslt);To get cotangent of the angle φ in calculator memory:
cot(mem[φ]);Trigonometric cotangent of the real argument is supported in free version of the Librow calculator.
Trigonometric cotangent of the complex argument is supported in professional version of the Librow calculator.