skmultilearn.embedding.CLEMS(measure, is_score=False, params=None)[source] ¶ Bases: sklearn.base.BaseEstimator
Embed the label space using a label network embedder from OpenNE
| Parameters: |
|
|---|
Example code for using this embedder looks like this:
from skmultilearn.embedding import CLEMS, EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN from sklearn.metrics import accuracy_score clf = EmbeddingClassifier( CLEMS(accuracy_score, True), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test)
fit(X, y)[source] ¶ Fits the embedder to data
| Parameters: |
|
|---|---|
| Returns: | fitted instance of self |
| Return type: | self |
fit_transform(X, y)[source] ¶ Fit the embedder and transform the output space
| Parameters: |
|
|---|---|
| Returns: | results of the embedding, input and output space |
| Return type: | X, y_embedded |