skmultilearn.base.base.MLClassifierBase[source] ¶ Bases: sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin
Base class providing API and common functions for all multi-label classifiers.
Implements base functionality for ML classifiers, especially the get/set params for scikit-learn compatibility.
fit(X, y)[source] ¶ Abstract method to fit classifier with training data
It must return a fitted instance of self.
| Parameters: |
|
|---|---|
| Returns: | fitted instance of self |
| Return type: | |
| Raises: |
|
get_params(deep=True)[source] ¶ Get parameters to sub-objects
Introspection of classifier for search models like cross-validation and grid search.
| Parameters: | deep (bool) – if True all params will be introspected also and
appended to the output dictionary. |
|---|---|
| Returns: | out – dictionary of all parameters and their values. If
deep=True the dictionary also holds the parameters
of the parameters. |
| Return type: | dict |
predict(X)[source] ¶ Abstract method to predict labels
| Parameters: | X (numpy.ndarray or scipy.sparse.csc_matrix) – input features of shape (n_samples, n_features) |
|---|---|
| Returns: | binary indicator matrix with label assignments with shape
(n_samples, n_labels) |
| Return type: | scipy.sparse of int |
| Raises: | NotImplementedError – this is just an abstract method |