Researcher Information
Professor TAKEDA Shinji
Faculty, Affiliation
Faculty of Mathematics and Physics, Institute of Science and Engineering
College and School Educational Field
Division of Mathematical and Physical Science, Graduate School of Natural Science and Technology
Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology
Course in Physics, School of Mathematics and Physics, College of Science and Engineering
Laboratory
Institute for Theoretical Physics
Academic Background
【Academic background(Doctoral/Master's Degree)】
University of Tsukuba Doctor Graduate school of pure and applied sciences Physics 200510 Completed
【Academic background(Bachelor's Degree)】
University of Tsukuba Physics 200103
【Degree】
Doctor of Science
Career
Kanazawa University Institute of Science and Engineering Faculty of Mathematics and Physics(2024/01-)
Kanazawa University Institute of Science and Engineering, Faculty of Mathematics and Physics(2018/12-2023/12)
(2011/10-2018/03)
Kanazawa University Institute of Science and Engineering, Faculty of Mathematics and Physics(2009/12-2018/11)
Columbia University Physics department Postdoc fellow(2008/09-2009/11)
(2005/10-2008/08)
Year & Month of Birth
1978/08
Academic Society
THE PHYSICAL SOCIETY OF JAPAN
Award
Specialities
Particle/Nuclear/Cosmic ray/Astro physics
Speciality Keywords
Tensor network,Lattice field theory
Research Themes
Analysis of phase structure for finite temperature/density QCD
The universe 0.00001 second after the Big Bang was extremely hot and quarks and gluons were freely moving around; such a state is called quark-gluon plasma (QGP) state. As time goes, the universe was rapidly expanding while cooling down. Then, quarks and gluon were trapped in hadrons (proton and neutron); such a state is called hadron state which is rather close to our current universe. When changing the state from the QGP to the hadron state, a rapid change of state, that is, a phase transition is believed to occur. The properties, say the nature of transition and the temperature at which the transition took place, etc. are, however, determined by dynamics of the fundamental theory. Therefore to reveal them, one has to rely on solving the theory by first principle simulations or carrying out experiments which realize the Big Bang in a lab. My final goal is to extract the information of the transition by following the former method.
Application of tensor network to high energy physics
Lattice QCD simulations play an important role in the study of QCD where the non-perturbative effect is crucial such as the confinement. On the other hand, there are some unsolved problems, for example, the strong CP problem, providing the equation of state for neutron stars, etc. When attacking these problems, however, one encounters the sign-problem that hampers the Monte-Carlo simulation since the Boltzmann weight is complex for such systems. In fact, there are many attempts to solve the sign-problem within a framework of the Monte-Carlo simulation but we do not have a perfect and general solution at this moment. Recently, however, an interesting idea was proposed in the condensed matter physics. It is called tensor network method whose striking feature is that there is no sign-problem. My interest is to apply the method to high energy physics, study the unexplored systems and reveal their dynamics.
Books
Papers
- All-mode renormalization for tensor network with stochastic noise Erika Arai,Hiroshi Ohki,Shinji Takeda,Masaaki Tomii Physical Review D 107 11 2023年06月01日
- Triad second renormalization group Daisuke Kadoh,Hideaki Oba,Shinji Takeda Journal of High Energy Physics 2022 4 2021年07月19日
- Nature of the phase transition for finite temperature $N_{\rm f}=3$ QCD with nonperturbatively O($a$) improved Wilson fermions at $N_{\rm t}=12$ Yoshinobu Kuramashi,Yoshifumi Nakamura,Hiroshi Ohno,Shinji Takeda Physical Review D 101 5 2020年01月10日
- Investigation of complex $φ^{4}$ theory at finite density in two dimensions using TRG Daisuke Kadoh,Yoshinobu Kuramashi,Yoshifumi Nakamura,Ryo Sakai,Shinji Takeda,Yusuke Yoshimura Journal of High Energy Physics 2020 2 2019年12月30日
- Critical endpoint in the continuum limit and critical endline at NT=6 of the finite temperature phase transition of QCD with clover fermions 2019年09月19日
- Tensor network approach to real-time path integral 2019年07月31日
- Tensor network analysis of critical coupling in two dimensional phi(4) theory Kadoh Daisuke,Kuramashi Yoshinobu,Nakamura Yoshifumi,Sakai Ryo,Takeda Shinji,Yoshimura Yusuke JOURNAL OF HIGH ENERGY PHYSICS 2019 5 2019年05月28日
- Tensor renormalization group algorithms with a projective truncation method Nakamura Yoshifumi,Oba Hideaki,Takeda Shinji PHYSICAL REVIEW B 99 15 2019年04月01日
- Continuum extrapolation of the critical endpoint in 4-flavor QCD with Wilson-Clover fermions 2018年12月04日
- Tensor network study of two dimensional lattice φ4 theory 2018年12月01日
- Tensor Renormalization Group Algorithms with Projective Truncation Method 未定 2018年09月24日
- Loop-TNR analysis of CP(1) model with theta term Hikaru Kawauchi, Shinji Takeda EPJ Web Conf. 175 2018年03月26日
- Application of tensor network method to two dimensional lattice N=1 Wess-Zumino model Ryo Sakai, Daisuke Kadoh, Yoshinobu Kuramashi, Yoshifumi Nakamura, Shinji Takeda Yusuke Yoshimura EPJ Web Conf. 175 2018年03月26日
- Tensor network formulation for two-dimensional lattice N=1 Wess-Zumino model Daisuke Kadoh, Yoshinobu Kuramashi, Yoshifumi Nakamura, Ryo Sakai, Shinji Takeda, Yusuke Yoshimura Journal of High Energy Physics 03 2018 141 2018年03月23日
- Calculation of fermionic Green functions with Grassmann higher-order tensor renormalization group Yoshimura Yusuke,Kuramashi Yoshinobu,Nakamura Yoshifumi,Takeda Shinji,Sakai Ryo PHYSICAL REVIEW D 97 5 2018年03月22日
- Calculation of fermionic Green functions with Grassmann higher-order tensor renormalization group Yusuke Yoshimura,Yoshinobu Kuramashi,Yoshifumi Nakamura,Shinji Takeda,Ryo Sakai Physical Review D 97 5 2018年03月01日
- Tensor network formulation for two-dimensional lattice N = 1 Wess-Zumino model Daisuke Kadoh,Yoshinobu Kuramashi,Yoshifumi Nakamura,Ryo Sakai,Shinji Takeda,Yusuke Yoshimura Journal of High Energy Physics 2018 3 2018年03月01日
- Critical point phase transition for finite temperature 3-flavor QCD with nonperturbatively O(a) improved Wilson fermions at N-t=10 Xiao-Yong Jin,Yoshinobu Kuramashi,Yoshifumi Nakamura,Shinji Takeda,Akira Ukawa PHYSICAL REVIEW D 96 3 2017/08
- Higher-order tensor renormalization group for relativistic fermion systems Ryo Sakai,Shinji Takeda,Yusuke Yoshimura PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS 6 2017/06
- Critical endline of the finite temperature phase transition for 2+1 flavor QCD around the SU(3)-flavor symmetric point Yoshinobu Kuramashi,Yoshifumi Nakamura,Shinji Takeda,Akira Ukawa PHYSICAL REVIEW D 94 11 2016/12
- Tensor renormalization group analysis of CP(N-1) model Hikaru Kawauchi,Shinji Takeda PHYSICAL REVIEW D 93 11 2016/06
- Curvature of the critical line on the plane of quark chemical potential and pseudoscalar meson mass for three-flavor QCD Jin Xiao-Yong,Kuramashi Yoshinobu,Nakamura Yoshifumi,Takeda Shinji,Ukawa Akira PHYSICAL REVIEW D 92 11 2015年12月22日
- Grassmann tensor renormalization group for the one-flavor lattice Gross-Neveu model with finite chemical potential Shinji Takeda,Yusuke Yoshimura PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS 4 2015/04
- Critical endpoint of the finite temperature phase transition for three flavor QCD Xiao-Yong Jin,Yoshinobu Kuramashi,Yoshifumi Nakamura,Shinji Takeda,Akira Ukawa PHYSICAL REVIEW D 91 1 2015/01
- Finite size scaling study of Nf=4 finite density QCD on the lattice Xiao-Yong Jin,Yoshinobu Kuramashi,Yoshifumi Nakamura,Shinji Takeda,Akira Ukawa Physical Review D - Particles, Fields, Gravitation and Cosmology 88 9 2013年11月22日
- Lattice study on quantum-mechanical dynamics of two-color QCD with six light flavors M. Hayakawa,K-I Ishikawa,S. Takeda,M. Tomii,N. Yamada PHYSICAL REVIEW D 88 9 2013/11
- Running coupling constant and mass anomalous dimension of six-flavor SU(2) gauge theory M. Hayakawa,K-I Ishikawa,S. Takeda,N. Yamada PHYSICAL REVIEW D 88 9 2013/11
- Formulation of domain-wall fermions in the Schrodinger functional Shinji Takeda PHYSICAL REVIEW D 87 11 2013/06
- Phase of quark determinant in lattice QCD with finite chemical potential Shinji Takeda,Yoshinobu Kuramashi,Akira Ukawa PHYSICAL REVIEW D 85 9 2012/05
- An O(a) modified lattice set-up of the Schrodinger functional in SU(3) gauge theory Paula Perez Rubio,Stefan Sint,Shinji Takeda JOURNAL OF HIGH ENERGY PHYSICS 2011 7 2011/07
- Automatic generation of Feynman rules in the Schrodinger functional Shinji Takeda NUCLEAR PHYSICS B 811 1-2 36 2009/04
- On cutoff effects in lattice QCD from short to long distances Michele Della Morte,Rainer Sommer,Shinji Takeda PHYSICS LETTERS B 672 4-5 407 2009/03
- Perturbative analysis of the Neuberger-Dirac operator in the Schrodinger functional Shinji Takeda NUCLEAR PHYSICS B 796 1-2 402 2008/06
- Scaling test of two-flavor O(a)-improved lattice QCD Michele Della Morte,Patrick Fritzsch,Harvey B. Meyer,Hubert Simma,Rainer Sommer,Shinji Takeda,Oliver Witzel,Ulli Wolff JHEP0807:037,2008 2008/04
- Vector meson masses in 2+1 flavor Wilson chiral perturbation theory S Aoki,O Bar,S Takeda PHYSICAL REVIEW D 73 9 2006/05
- Nonperturbative O(a) improvement of the Wilson quark action with the renormalization-group-improved gauge action using the Schrodinger functional method S Aoki,M Fukugita,S Hashimoto,KI Ishikawa,N Ishizuka,Y Iwasaki,K Kanaya,T Kaneko,Y Kuramashi,M Okawa,S Takeda,Y Taniguchi,N Tsutsui,A Ukawa,N Yamada,T Yoshie PHYSICAL REVIEW D 73 3 2006/02
- Pseudoscalar meson masses in Wilson chiral perturbation theory for 2+1 flavors S Aoki,O Bar,T Ishikawa,S Takeda PHYSICAL REVIEW D 73 1 2006/01
- Scaling study of the step scaling function in SU(3) gauge theory with improved gauge actions S. Takeda,S. Aoki,M. Fukugita,K-I. Ishikawa,N. Ishizuka,Y. Iwasaki,K. Kanaya,T. Kaneko,Y. Kuramashi,M. Okawa,Y. Taniguchi,A. Ukawa,T. Yoshié Physical Review D - Particles, Fields, Gravitation and Cosmology 70 7 2004
- Perturbative determination of O(a) boundary improvement coefficients for the Schrodinger functional coupling at 1 loop with improved gauge actions S Takeda,S Aoki,K Ide PHYSICAL REVIEW D 68 1 2003/07
- Nonperturbative O(a) improvement of the Wilson quark action with the renormalization-group-improved gauge action using the Schrödinger functional method S. Aoki,M. Fukugita,S. Hashimoto,K. I. Ishikawa,N. Ishizuka,Y. Iwasaki,K. Kanaya,T. Kaneko,Y. Kuramashi,M. Okawa,S. Takeda,Y. Taniguchi,N. Tsutsui,A. Ukawa,N. Yamada,T. Yoshié Physical Review D - Particles, Fields, Gravitation and Cosmology 73 3 2006
- Perturbative determination of O[Formula Presented] boundary improvement coefficients for the Schrödinger functional coupling at 1 loop with improved gauge actions Shinji Takeda,Sinya Aoki,Kiyotomo Ide Physical Review D - Particles, Fields, Gravitation and Cosmology 68 1 2003
- Pseudoscalar meson masses in Wilson chiral perturbation theory for 2+1 flavors S. Aoki,O. Bär,T. Ishikawa,S. Takeda Physical Review D - Particles, Fields, Gravitation and Cosmology 73 1 2006年01月01日
- An O(a) modified lattice set-up of the Schrodinger functional in SU(3) gauge theory Paula Perez Rubio,Stefan Sint,Shinji Takeda JOURNAL OF HIGH ENERGY PHYSICS 7 2011/07
- Curvature of the critical line on the plane of quark chemical potential and pseudoscalar meson mass for three-flavor QCD Xiao-Yong Jin,Yoshinobu Kuramashi,Yoshifumi Nakamura,Shinji Takeda,Akira Ukawa PHYSICAL REVIEW D 92 11 2015/12
- Spectroscopy by Tensor Renormalization Group Method Fathiyya Izzatun Az-zahra,Shinji Takeda,Takeshi Yamazaki PRD 2024年04月24日
- Critical endpoint of the finite temperature phase transition for three flavor QCD Xiao-Yong Jin,Yoshinobu Kuramashi,Yoshifumi Nakamura,Shinji Takeda,Akira Ukawa Physical Review D - Particles, Fields, Gravitation and Cosmology 91 1 2015年01月26日
- Grassmann Tensor Renormalization Group for $N_f=2$ massive Schwinger model with a $θ$ term Hayato Kanno,Shinichiro Akiyama,Kotaro Murakami,Shinji Takeda 2024年12月12日
Conference Presentations
- A novel method to evaluate real-time path integral for scalar phi^4 theory(conference:Lattice 2021)(2021年07月29日)
- 2次元格子N=1Wess‐Zumino模型のテンソルネットワーク形式:連続極限における超対称性の回復(conference:日本物理学会北陸支部定例学術講演会講演予稿集(Web))(2017)
- Tensor Network Approach to CP(N-1) model(conference:CP^N model: recent developments and future directions)(2020年01月23日)
- Tensor Networks -- Lagrangian Approach(conference:U. of Tokyo, Hadron Theory Group Online Seminar)(2021年06月11日)
- Study of QCD critical end-point using Wilson-type fermions(conference:QCD phase diagram and lattice QCD)(2021年10月27日)
- Tensor network study of CP(1) model with theta-term(conference:German Japanese Workshop 2024)(2024年09月26日)
- All-mode renormalization and phase structure of 2d CP(1) model with topological theta term(2023年07月13日)
- Tensor Network Approach to Real-time Path Integral(conference:NYCU High Energy Physics Seminar (on-line))(2021年10月19日)
- Tensor network approach to real-time path integral(conference:International Workshop on Tensor Networks in Many Body and Lattice Field)(2021年07月27日)
- Spectroscopy by Tensor Renormalization group method(2023年11月16日)
- Tensor Renormalization Group and Application to Elementary Particle Physics(conference:KEK-THEORY Workshop 2024)(2024年12月11日)
- Tensor network coarse-graining with stochastic noise(conference:Tensor networks and quantum computing for high-energy physics in Taiwan)(2023年12月14日)
- All-mode Renormalization for Tensor Network with Stochastic Noise(2023年09月01日)
- Progress of tensor networks(conference:(PPP2024))(2024年08月22日)
- Tensor networks(2016年07月26日)
- Tensor renormalization group approach to finite fermion density system(conference:10sor network workshop, Field 2x5 joint workshop on new algorithm for quantum many body)(2014/11)
Others
- Computing Lattice Field Theory by Tensor Networks -- Challenge to Sign Problem JPS 77 3 136 2022/03
Arts and Fieldwork
Patent
Theme to the desired joint research
Grant-in-Aid for Scientific Research
○しろまる「テンソルネットワークの素粒子物理学への応用」(2022-2024)
○しろまる「テンソルネットワークによる実時間ダイナミクスの解明」(2021-2024)
○しろまる「テンソルネットワーク法による素粒子物理学の諸問題へのアプローチ」(2017-2020)
○しろまる「有限温度・密度QCDの臨界点探索」(2014-2016)
○しろまる「量子色力学の高密度領域へのアプローチ」(2011-2013)
○しろまる「量子色力学の相構造解析」(2011-2012)
Competitive research funding,Contribution
Collaborative research,Consignment study
Classes (Bachelors)
○しろまるIntroduction to Quantum Mechanics b(2023)
○しろまるComputer Experiments 2B(2023)
○しろまるQuantum Mechanics 2b(2023)
○しろまるQuantum Mechanics 2a(2023)
○しろまるIntroduction to Quantum Mechanics a(2023)
○しろまるComputer Experiments 2A(2023)
○しろまるTopics in Statistical Mechanics(2023)
○しろまるSelected Topics(2023)
○しろまるTopics in Statistical Mechanics(2023)
○しろまるIntroduction to Thermodynamics and Statistical Mechanics(2022)
○しろまるIntroduction to Thermodynamics and Statistical Mechanics(2022)
○しろまるComputer Experiments 2(2022)
○しろまるIntroduction to Quantum Mechanics b(2022)
○しろまるResearch Work in Physics(2022)
○しろまるIntroduction to Quantum Mechanics a(2022)
○しろまるResearch Work in Physics(2022)
○しろまるQuantum Mechanics 2B(2022)
○しろまるThermodynamics and Statistical Mechanics 1(2022)
○しろまるResearch Work in Physics(2022)
○しろまるIntroduction to Thermodynamics and Statistical Mechanics b(2022)
○しろまるTopics in Statistical Mechanics(2022)
○しろまるResearch Work in Physics(2022)
○しろまるEntrepreneurship(2022)
○しろまるTopics in Statistical Mechanics(2022)
○しろまるThermodynamics and Statistical Mechanics 1(2022)
○しろまるComputer Experiments 2(2022)
○しろまるQuantum Mechanics 2A(2022)
○しろまるLecture on Life in Campus and Society(2022)
○しろまるLecture on Life in Campus and Society(2021)
○しろまるComputer Experiments 2(2021)
○しろまるResearch Work in Physics(2021)
○しろまるComputational Physics A(2021)
○しろまるTopics in Statistical Mechanics(2021)
○しろまるComputational Physics B(2021)
○しろまるQuantum Mechanics 2A(2021)
○しろまるQuantum Mechanics 2B(2021)
○しろまるTopics in Statistical Mechanics(2020)
○しろまるComputational Physics A(2020)
○しろまるExercise in Quantum Mechanics 2A(2020)
○しろまるComputational Physics B(2020)
○しろまるExercise in Quantum Mechanics 2B(2020)
○しろまるComputer Experiments 2(2020)
○しろまるExercise in Quantum Mechanics 2A(2019)
○しろまるComputational Physics A(2019)
○しろまるComputer Experiments 2(2019)
○しろまるExercise in Quantum Mechanics 1(2019)
○しろまるComputational Physics B(2019)
○しろまるExercise in Quantum Mechanics 2B(2019)
Classes (Graduate Schools)
○しろまるcomputational elementary particle physics(2023)
○しろまるcomputational elementary particle physics(2023)
○しろまるLaboratory Rotation I(2023)
○しろまるLaboratory Rotation I(2023)
○しろまるLaboratory RotationI(2023)
○しろまるLaboratory RotationI(2023)
○しろまるLaboratory RotationI(2023)
○しろまるTheoretical Physics a(2023)
○しろまるScientific Presentation B(2023)
○しろまるScientific Presentation B(2023)
○しろまるUtilization of Scientific instruments B(2023)
○しろまるUtilization of Scientific instruments B(2023)
○しろまるMethodology of Science B(2023)
○しろまるMethodology of Science B(2023)
○しろまるMethodology of Science B(2023)
○しろまるTheoretical Physics b(2023)
○しろまるScientific Presentation B(2023)
○しろまるScientific Presentation B(2023)
○しろまるUtilization of Scientific instruments B(2023)
○しろまるUtilization of Scientific instruments B(2023)
○しろまるMethodology of Science B(2023)
○しろまるScientific Presentation B(2023)
○しろまるScientific Presentation B(2023)
○しろまるIntroduction to Theoretical Physics b(2023)
○しろまるMethodology of Science B(2023)
○しろまるUtilization of Scientific instruments B(2023)
○しろまるUtilization of Scientific instruments B(2023)
○しろまるMethodology of Science B(2023)
○しろまるMethodology of Science B(2023)
○しろまるScientific Presentation B(2023)
○しろまるScientific Presentation B(2023)
○しろまるUtilization of Scientific instruments B(2023)
○しろまるUtilization of Scientific instruments B(2023)
○しろまるMethodology of Science B(2023)
○しろまるIntroduction to Theoretical Physics a(2023)
○しろまるLaboratory Rotation I(2023)
○しろまるcomputational elementary particle physics(2022)
○しろまるcomputational elementary particle physics(2022)
○しろまるUtilization of Scientific instruments B(2022)
○しろまるUtilization of Scientific instruments B(2022)
○しろまるMethodology of Science B(2022)
○しろまるTheoretical Physics b(2022)
○しろまるMethodology of Science B(2022)
○しろまるScientific Presentation B(2022)
○しろまるScientific Presentation B(2022)
○しろまるUtilization of Scientific instruments B(2022)
○しろまるUtilization of Scientific instruments B(2022)
○しろまるScientific Presentation B(2022)
○しろまるMethodology of Science B(2022)
○しろまるScientific Presentation B(2022)
○しろまるScientific Presentation B(2022)
○しろまるUtilization of Scientific instruments B(2022)
○しろまるUtilization of Scientific instruments B(2022)
○しろまるMethodology of Science B(2022)
○しろまるMethodology of Science B(2022)
○しろまるTheoretical Physics a(2022)
○しろまるScientific Presentation B(2022)
○しろまるMethodology of Science B(2022)
○しろまるScientific Presentation B(2022)
○しろまるIntroduction to Theoretical Physics b(2022)
○しろまるMethodology of Science B(2022)
○しろまるMethodology of Science B(2022)
○しろまるUtilization of Scientific instruments B(2022)
○しろまるUtilization of Scientific instruments B(2022)
○しろまるScientific Presentation B(2022)
○しろまるIntroduction to Theoretical Physics a(2022)
○しろまるMethodology of Science B(2021)
○しろまるResearch Work B(2021)
○しろまるUtilization of Scientific instruments B(2021)
○しろまるScientific Presentation B(2021)
○しろまるIntroduction to Theoretical Physics a(2021)
○しろまるcomputational elementary particle physics(2021)
○しろまるMethodology of Science B(2021)
○しろまるSpecial Lectures on Physics(2021)
○しろまるIntroduction to Theoretical Physics b(2021)
○しろまるResearch Work B(2021)
○しろまるTheoretical Physics b(2021)
○しろまるTheoretical Physics a(2021)
○しろまるTheoretical Physics b(2020)
○しろまるTheoretical Physics a(2020)
○しろまるcomputational elementary particle physics(2020)
○しろまるcomputational elementary particle physics(2020)
○しろまるcomputational elementary particle physics(2020)
○しろまるcomputational elementary particle physics(2020)
○しろまるMethodology of Science B(2020)
○しろまるMethodology of Science B(2020)
○しろまるResearch Work B(2020)
○しろまるIntroduction to Theoretical Physics b(2020)
○しろまるResearch Work B(2020)
○しろまるIntroduction to Theoretical Physics a(2020)
○しろまるcomputational elementary particle physics(2019)
○しろまるcomputational elementary particle physics(2019)
○しろまるcomputational elementary particle physics(2019)
○しろまるIntroduction to Theoretical Physics a(2019)
○しろまるcomputational elementary particle physics(2019)
○しろまるTheoretical Physics a(2019)
○しろまるTheoretical Physics b(2019)
○しろまるResearch Work B(2019)
○しろまるMethodology of Science B(2019)
○しろまるIntroduction to Theoretical Physics b(2019)
○しろまるResearch Work B(2019)
○しろまるMethodology of Science B(2019)