- Article
- Published:
Giant Rashba-type spin splitting in bulk BiTeI
- K. Ishizaka 1 ,
- M. S. Bahramy 2 ,
- H. Murakawa 3 ,
- M. Sakano 1 ,
- T. Shimojima 1 ,
- T. Sonobe 1 ,
- K. Koizumi 4 ,
- S. Shin 4,5 ,
- H. Miyahara 6 ,
- A. Kimura 6 ,
- K. Miyamoto 7 ,
- T. Okuda 7 ,
- H. Namatame 7 ,
- M. Taniguchi 6,7 ,
- R. Arita 1,2 ,
- N. Nagaosa 1,2 ,
- K. Kobayashi 8 ,
- Y. Murakami 8 ,
- R. Kumai 8,9 ,
- Y. Kaneko 3 ,
- Y. Onose 1,3 &
- ...
- Y. Tokura 1,2,3
Nature Materials volume 10, pages 521–526 (2011)Cite this article
-
27k Accesses
-
853 Citations
-
16 Altmetric
Abstract
There has been increasing interest in phenomena emerging from relativistic electrons in a solid, which have a potential impact on spintronics and magnetoelectrics. One example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin–orbit interaction under broken inversion symmetry. A high-energy-scale Rashba spin splitting is highly desirable for enhancing the coupling between electron spins and electricity relevant for spintronic functions. Here we describe the finding of a huge spin–orbit interaction effect in a polar semiconductor composed of heavy elements, BiTeI, where the bulk carriers are ruled by large Rashba-like spin splitting. The band splitting and its spin polarization obtained by spin- and angle-resolved photoemission spectroscopy are well in accord with relativistic first-principles calculations, confirming that the spin splitting is indeed derived from bulk atomic configurations. Together with the feasibility of carrier-doping control, the giant-Rashba semiconductor BiTeI possesses excellent potential for application to various spin-dependent electronic functions.
This is a preview of subscription content, access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Optical manipulation of Rashba-split 2-dimensional electron gas
Reversal of spin-polarization near the Fermi level of the Rashba semiconductor BiTeCl
Unconventional broadening of Rashba spin splitting in a Au2Sb surface alloy with periodic structural defects
References
Rashba, E. I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).
Casella, R. C. Toroidal energy surfaces in crystals with wurtzite symmetry. Phys. Rev. Lett. 5, 371–373 (1960).
Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).
Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).
LaShell, S., McDougall, B. A. & Jensen, E. Spin splitting of Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996).
Hoesch, M. et al. Spin structure of the Shockley surface state on Au(111). Phys. Rev. B 69, 241401 (2004).
Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).
Gierz, I. et al. Silicon surface with giant spin splitting. Phys. Rev. Lett. 103, 046803 (2009).
Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).
Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).
Bauer, E. et al. Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si. Phys. Rev. Lett. 92, 027003 (2004).
Shevelkov, A. V., Dikarev, E. V., Shpanchenko, R. V. & Popovkin, B. A. Crystal structures of bismuth tellurohalides BiTeX (X=Cl, Br, I) from X-ray powder diffraction data. J. Solid State Chem. 114, 379–384 (1995).
Hashimoto, S. et al. The de Haas-van Alphen effect and the Fermi surface in CePt3Si and LaPt3Si. J. Phys. Condens. Matter 16, L287–L296 (2004).
Lee, K. W. & Pickett, W. E. Crystal symmetry, electron–phonon coupling, and superconducting tendencies in Li2Pd3B and Li2Pt3B. Phys. Rev. B 72, 174505 (2005).
Tomokiyo, A., Okada, T. & Kawano, S. Phase diagram of system (Bi2Te3)–(BiI3) and crystal structure of BiTeI. Jpn. J. Appl. Phys. 16, 291–298 (1977).
Koroteev, Y. M. et al. Strong spin–orbit splitting on Bi surfaces. Phys. Rev. Lett. 93, 046403 (2004).
Kimura, A. et al. Strong Rashba-type spin polarization of the photocurrent from bulk continuum states: Experiment and theory for Bi(111). Phys. Rev. Lett. 105, 076804 (2010).
Hirahara, T. et al. Role of spin–orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys. Rev. Lett. 97, 146803 (2006).
Hirahara, T. et al. Direct observation of spin splitting in bismuth surface states. Phys. Rev. B 76, 153305 (2007).
Mathias, S. et al. Quantum-well induced giant spin–orbit splitting. Phys. Rev. Lett. 104, 066802 (2010).
Lo, I. et al. Anomalous k-dependent spin splitting in wurtzite AlxGa1−xN/GaN heterostructures. Phys. Rev. B 75, 245307 (2007).
Wang, W. T. et al. Dresselhaus effect in bulk wurtzite materials. Appl. Phys. Lett. 91, 082110 (2007).
Cartoixà, X., Ting, D. Z-Y. & Chang, Y-C. Suppression of the D’yakonov-Perel’ spin-relaxation mechanism for all spin components in [111] zincblende quantum wells. Phys. Rev. B 71, 045313 (2005).
Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).
Takeda, S. N., Higashi, N. & Daimon, H. Visualization of in-plane dispersion of hole subbands by photoelectron spectroscopy. Phys. Rev. Lett. 94, 037401 (2005).
King, P. D. C. et al. Surface band-gap narrowing in quantized electron accumulation layers. Phys. Rev. Lett. 104, 256803 (2010).
King, P. D. C., Veal, T. D. & McConville, C. F. Nonparabolic coupled Poisson–Schrödinger solutions for quantized electron accumulation layers: Band bending, charge profile, and subbands in InN surfaces. Phys Rev. B 77, 125305 (2008).
Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).
Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).
Kiss, T. et al. A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 79, 023106 (2008).
Iori, K. et al. The self-calibration of a retarding-type Mott spin polarimeter with a large collection angle. Rev. Sci. Instrum. 77, 013101 (2006).
Blaha, P., Shwarz, K., Madsen, G., Kvasnicka, D. & Luiz, J. WIEN2K package; available at, http://www.wien2k.at.
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Mostofi, A. A., Yates, J. R., Lee, Y-S., Vanderbilt, D. & Marzari, N. Wannier90: A tool for obtaining maximally localized Wannier functions. Comp. Phys. Commun. 178, 685–699 (2008).
Kuneš, J. et al. WIEN2WANNIER: From linearized augmented plane waves to maximally localized Wannier functions. Comp. Phys. Commun. 181, 1888–1895 (2010).
Dil, J. H. et al. Rashba-type spin–orbit splitting of quantum well states in ultrathin Pb films. Phys. Rev. Lett. 101, 266802 (2008).
Hirahara, T. et al. Quantum well states in ultrathin Bi films: Angle-resolved photoemission spectroscopy and first-principles calculations study. Phys. Rev. B 75, 035422 (2007).
Acknowledgements
We thank H. Y. Hwang and J. S. Lee for discussion, and Y. Ishida for his help in the ARPES experiment. This research is supported by the Japan Society for the Promotion of Science through the ‘Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)’, initiated by the Council for Science and Technology Policy.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Ishizaka, K., Bahramy, M., Murakawa, H. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nature Mater 10, 521–526 (2011). https://doi.org/10.1038/nmat3051
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nmat3051
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
-
Nonlinear transport and radio frequency rectification in BiTeBr at room temperature
- Xiu Fang Lu
- Cheng-Ping Zhang
- Kian Ping Loh
Nature Communications (2024)
-
First-Principles Study of the Electronic and Optical Properties of Sn-BeO Heterostructure
- Bipradip Chakraborty
- Madhurjya M. Borgohain
- Nirab C. Adhikary
Journal of Electronic Materials (2024)
-
Absorption coefficient of a DMS ellipsoid quantum dot with Rashba spin–orbit interaction
- A. M. Babanlı
- M. Balcı
- V. Sabyrov
Journal of Computational Electronics (2024)
-
Elastic, electronic, and optical properties of monolayer MnBi2Se4
- Mohsen Balvasi
- Abolghasem Avazpour
- Moslem Zareh Bidsardareh
Iranian Journal of Science (2024)
-
Observation of plaid-like spin splitting in a noncoplanar antiferromagnet
- Yu-Peng Zhu
- Xiaobing Chen
- Chang Liu
Nature (2024)