Main

Finite state automata :
M = (K, Σ, δ, S, F)
K : set of state
Σ: finite set of input symbol
s : s in K, initial state
δ: (K*Σt*Σs)->K * Σ*
F : F in K, final state set

regular expression :
A->wB, A->w

Pumping lemma for regular expression
if z in L and |z| >= n, we may write z = uvw
1. |v| >= 1
2. |uv| <= n
3. i uviw in L

Theorem : L(Finite state automata) = L(Regular expression)

Push down automata
M = (K, Σi, Σs, δ, s, F)
K : set of state
Σi: finite set of input symbol
Σs: finite set of stack symbol
s : s in K, initial state
δ: (K * Σi * Σs)-> K * Σ*
F : F in K, final state set

Context free grammar :
G = (V,T,P,S)
A->α, αin (V∪T)*

Pumping lemma for context free grammar :
if z in L and |z| >= n, we may write z = uvwxy
1. |vx| >= 1
2. |vwx| <= n
3. i uviwxiy in L

Turing Machine (TM)
M = (K,Σ,δ,S)
K : set of state
Σ: finite set of symbol
s : s in K, initial state
δ: (K*Σ)->(K∪{h,"yes","no"})* Σ*(←,—,→)

example : A TM that decide plaindromes
plaindromes (迴文) : 正讀倒讀都一樣的 word。
K Σ δ
s 0 (q0 ,> ,→) s :start,q0:上次讀的bit為0.
s 1 (q1 ,> ,→) q1: 上次讀的bit為1.
s > (s ,> ,→) 寫上一個 >
s _ (yes,_ ,—)
q0 0 (q0 ,0 ,→) q0:移到最後一個bit "_"
q0 1 (q0 ,1 ,→)
q0 _ (q0’,_ ,←)
q1 0 (q1 ,0 ,←) q1:移到最後一個bit "_"
q1 1 (q1 ,1 ,←)
q1 _ (q1’,_ ,←)
q0’ 0 (q ,_ ,←) q0’: 看看是否為0
q0’ 1 (no ,1 ,—)
q0’ > (yes,_ ,→)
q1’ 0 (no ,1 ,—) q1’: 看看是否為1
q1’ 1 (q ,_ ,←)
q1’ > (yes,> ,→)
q 0 (q ,0 ,←) q : 回到開頭,繼續檢查下一個。
q 1 (q ,1 ,←)
q > (s ,> ,→)

Unrestricted Grammar
α->β

Theorem : L(Turing Machine) = L(Unrestricted Grammar)
L(Turing Machine) = L(First Order Logic)

Church-Turing Thesis :
"Computable function" can be identified with the class of partial recursive functions.

Closure Property :
A class of languages is closed under a particular operatio.
Example :
intersection : L1∩L2
union : L1∪L2
concatenation : L1L2
Kleene operator : L1*

page revision: 0, last edited: 18 Sep 2010 09:15
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License
Click here to edit contents of this page.
Click here to toggle editing of individual sections of the page (if possible). Watch headings for an "edit" link when available.
Append content without editing the whole page source.
Check out how this page has evolved in the past.
If you want to discuss contents of this page - this is the easiest way to do it.
View and manage file attachments for this page.
A few useful tools to manage this Site.
Change the name (also URL address, possibly the category) of the page.
View wiki source for this page without editing.
View/set parent page (used for creating breadcrumbs and structured layout).
Notify administrators if there is objectionable content in this page.
Something does not work as expected? Find out what you can do.
General Wikidot.com documentation and help section.
Wikidot.com Terms of Service - what you can, what you should not etc.
Wikidot.com Privacy Policy.

AltStyle によって変換されたページ (->オリジナル) /