You need to have JavaScript enabled to use this page.
Login
Close

FHK:Fuji Hokuroku Flux Observation Site


General site detail (Updated 31 July 2025)
Site name
Fuji Hokuroku Flux Observation Site
AsiaFlux site code
FHK
Location Fujiyoshida City, Yamanashi Pref, Japan
Position 35o 26' 36.8"N, 138o 45' 53.0"E
(revised Jan. 8, 2025)
Elevation 1050-1150 m above sea level
Slope 3-4 deg
Terrain type
Flat
Area 150 ha
Fetch -
Climate Cfa:Temperate - mild with no dry season,
hot summer
Mean annual air temperature
8.9 deg C (2006-2023, at a height of 2m)
Mean annual precipitation
1831 mm (2006-2023)
Vegetation type
Deciduous needleleaf forest
(Japanese larch afforestation)
Dominant species (Overstory)
Japanese larch (Larix Kaempferi Sarg.), evergreen
needle-leafed species (Pinus densiflora and Abies
homolepis), deciduous broad-leafed species (Swida
controversa, Quercus serrata, Quercus crispula,
Betula platyphylla var.japonica, Prunus incisa, etc.)
Dominant species (Understory)
Ferns (Dryopteris crassirhizoma, Dryopteris
expansa), bamboo grass (Sasamorpha borealis),
and other herbs.
Canopy height
20-26 m
Age Around 70 years old (Planted around 1950)
LAI Larch: 2.88 m2m-2 estimated based on the leaf
mass abundance (Okano & Arase 2007), and
2.4 m2m-2 estimated based on 3D portable laser
scanner measurement (Maki et al., 2012),
Understory: 3.0 m2m-2 (max)
After thinning, the tree LAI was 2.31 in 2016.
Disturbance As the first thinning, approximately 36% of the larch trees located more than 20 meters away from the observation tower were cut down in May 2014.
The second thinning was carried out near the observation tower in March 2015.
Between 2014 to 2015, approximately 39% of the larch trees were cut down, reducing the forest density from 409 trees per hectare in 2013 to 249 trees per hectare in 2015. The harvested timber and above-ground residues were removed from the site.
Soil type
Coarse volcanic ash (Urakawa et al., 2015)

Observations
Eddy Covariance method (CO2)
System Open- and closed-path systems (CO2 flux, latent heat flux)
Wind speed
Three-dimensional sonic anemometer-thermometers:
DA-600-3TV, Probe TR-61C, SONIC CORP.
(Jan.1, 2006- May 9, 2011);
DA-650-3TV, Probe TR-61C, SONIC CORP.
(May 9, 2011- Nov.22, 2011);
DA-600-3TV, Probe TR-61C, SONIC CORP.
(Nov.22, 2011- Apr.18, 2012);
DA-700-3TV, Probe TR-61A, SONIC CORP.
(Apr.18, 2012- Apr.11 2016);
CSAT3, Campbell Scientific (Apr. 14, 2014-)
Air temperature
Platinum resistance thermometer and capacitive hygrometer : HMP45A, Vaisala (Jan. 2006 - May 9, 2011); HPM155A, Vaisala (May 9, 2011 - ) coupled with aspirated radiation shield, CPR-AS-21, Climatec, Japan.
Water vapor
Open-path CO2/H2O analyzers, LI-7500, LI-COR
(Jan.1, 2006); LI-7000, LI-COR (Jan. 1, 2012-Apr. 11, 2016)
Closed-path CO2/H2O analyzers, LI-6262, LI-COR
(Jan.1, 2006- Apr.11, 2016)
Platinum resistance thermometer and capacitive hygrometer : HMP45A, Vaisala (Jan. 2006-May 9, 2011); HMP155A, Vaisala (May 9, 2011- ) coupled with aspirated radiation shield, CPR-AS-21, Climatec, Japan
CO2 Open-path CO2/H2O analyzer, LI-7500, LI-COR (Jan.1,
2006- ),
Closed-path CO2/H2O analyzer, LI-6262, LI-COR (Jan.1,
2006- Apr.11, 2016); LI-7000, LI-COR (Apr. 19, 2012- )
Measurement height
35 m
Sampling frequency
10 Hz
Averaging time
30 min
Data logger
DR-M3, TEAC, Japan (Jan.2006-March 2012);
CR-23X, Campbell Scientific, USA (Jan.2006 - April 2008);
CR-3000, Campbell Scientific, USA (May 2008-)
Data storage
Magneto-Optical Disk (TEAC); Data-logger CR-3000, Campbell Scientific, USA
Original data
Raw data

Meteorology
Observation items
Levels/ Depth
Instrument
Global solar radiation
(incoming)
32 m,
30 m Pyranometer (32m): MS-402F, Eko, Japan (Jan. 2006 - Apr. 15, 2015); CMP6, Kipp&Zonen, Netherland (Apr. 15, 2015 -),
Radiometer (30m): MR-50, Eko, Japan (Jan. 2006 to Nov. 16, 2015); NR01, Hukseflux, Netherland (Nov. 16, 2015 -)
Transmitted solar radiation
(below canopy incoming)
2 m (5 points),
2 m (2 points)
Pyranometer (5 points): MS-601, Eko, Japan (Jan. 2006 - Apr. 15, 2015); CMP6, Kipp&Zonen, Netherland (Apr. 15, 2015 -)
Radiometer: MR-50, Eko, Japan (Jan. 2006 - Apr. 12, 2018; Jan. 2006 - Apr. 10, 2017); NR01, Hukseflux, Netherland (Apr. 12, 2018 - ; Apr. 10, 2017 -)
Global solar radiation
(outgoing)
30 m
Radiometer: MR-50, Eko (Jan. 2006 - Nov. 16, 2015); NR01, Hukseflux, Netherland (Nov. 16, 2015 -)
Transmitted solar radiation
(below canopy outgoing)
2 m (2 points)
Radiometer: MR-50, Eko (Jan. 2006 - Apr. 12, 2018; Jan. 2006 - Apr. 10, 2017); NR01, Hukseflux, Netherland (Apr. 12, 2018 -; Apr. 10, 2017 -)
Long-wave radiation
(incoming)
30 m
Radiometer: MR-50, Eko (Jan. 2006 - Nov. 16, 2015); NR01, Hukseflux, Netherland (Nov. 16, 2015 -)
Transmitted long-wave
radiation (below canopy
incoming)
2 m (2 points)
Radiometer: MR-50, Eko (Jan. 2006 - Apr. 12, 2018; Jan. 2006 - Apr. 10, 2017); NR01, Hukseflux, Netherland (Apr. 12, 2018 - ; Apr. 10, 2017 -)
Long-wave radiation
(outgoing) 30 m
Radiometer: MR-50, Eko (Jan. 2006 - Nov. 16, 2015); NR01, Hukseflux, Netherland (Nov. 16, 2015 -)
Transmitted long-wave
radiation (below canopy
outgoing)
2 m (2 points)
Radiometer: MR-50, Eko (Jan. 2006 - Apr. 12, 2018; Jan. 2006 - Apr. 10, 2017); NR01, Hukseflux, Netherland (Apr. 12, 2018 - ; Apr. 10, 2017 -)
Net radiation
30 m Radiometer: MR-50, Eko (Jan. 2006-Nov. 16, 2015); NR01, Hukseflux, Netherland (Nov. 16, 2015-)
2 m (2 points) Radiometer: MR-50, Eko (Jan. 2006- Apr. 12, 2018; Jan. 2006- Apr. 10, 2017); NR01, Hukseflux, Netherland (Apr. 12, 2018-; Apr. 10, 2017-)
PPFD (incoming)
32 m
Quantum sensor: LI-190S, LI-COR (Jan. 2006 - Apr. 16, 2015); LI-190S, LI-COR encased in a weather-proof external housing with a glass dome (Apr. 16, 2015 -) (Akitsu et al., 2020); ML-020P, Eko, Japan (Jan. 2006 - Apr. 15, 2013); SQ-110, Apogee, USA (Apr. 15, 2013 -)
Transmitted PAR
(below canopy incoming)
2 m (5 points) Quantum sensor: LI-190S, LI-COR (Jan. 2006 - Mar. 2007); ML-020P, Eko (Mar. 2007 - Apr. 15, 2013); SQ-110, Apogee, USA (Apr. 15, 2013 -)
Reflected PAR (outgoing)
30 m Quantum sensor: LI-190S, LI-COR (Jan. 2006-Mar. 2007); ML-020P, Eko (Mar. 2007-Apr. 15, 2013); SQ-110, Apogee, USA (Apr. 15, 2013-); LI-190S, LI-COR encased in a weather-proof external housing with a glass home (Apr. 12, 2018-) (Akitsu et al., 2020)
Reflected PAR
(below canopy outgoing)
2 m (3 points)
Quantum sensor: LI-190S, LI-COR (Jan.2006-Mar.2007); ML-020P, Eko (Mar.2007-Apr. 15, 2013); SQ-110, Apogee, USA (Apr. 15, 2013-)
Wind direction
35 m Three-dimensional sonic
anemometer-thermometers: DA-600-3TV, Probe TR-61C, SONIC CORP. (Jan.1, 2006-
May 9, 2011); DA-650, Probe
TR-61C, SONIC CORP. (May 9, 2011- Nov.22, 2011);
DA-600-3TV, Probe TR-61C, SONIC CORP. (Nov. 22, 2011
-Apr. 18, 2012); DA-700-3TV, Probe
TR-61A, SONIC CORP. (Apr.18, 2012-Apr.11, 2016); CSAT3, Campbell Scientific, USA (Apr. 14, 2014-)
32, 27, 22, 16,
10, 4.5, 2 m
Sonic anemometer: MA-130A, Eko,
Japan (Jan.2006-Mar.2007);
PGWS-100-3, GILL (Apr.2007-)
Wind speed
35 m Three-dimensional sonic
anemometer-thermometers: DA-600-3TV, Probe TR-61C, SONIC CORP. (Jan.1, 2006-
May 9, 2011); DA-650, Probe
TR-61C, SONIC CORP. (May 9, 2011 - Nov. 22, 2011); DA-600-3TV, Probe TR-61C, SONIC CORP. (Nov.22,2011
- Apr.18, 2012); DA-700-3TV, Probe
TR-61A, SONIC CORP. (Apr.18, 2012 - Apr.11, 2016); CSAT3, Campbell Scientific, USA (Apr. 14, 2014-)
32, 27, 22, 16,
10, 4.5, 2 m
Sonic anemometer: MA-130A, Eko,
Japan (Jan. 2006 - Mar. 2007);
PGWS-100-3, GILL (Apr. 2007-)
Air temperature
32, 27, 22, 16,10,
4.5, 2, 1, 0.5 m Platinum resistance thermometer and capacitive hygrometer: HMP-45D, Vaisala (Jan. 2006 - Apr. 12, 2011); HMP155, Vaisala (Apr. 12, 2011-) coupled with aspirated radiation shield, CPR-AS-21, Climatec, Japan
Relative humidity 32, 27, 22, 16,
10, 4.5, 2, 1,
0.5 m Platinum resistance thermometer and capacitive hygrometer: HMP-45D, Vaisala (Jan. 2006 - Apr. 12, 2011); HMP155, Vaisala (Apr. 12, 2011-) coupled with a fan-aspirated radiation shield, CPR-AS-21, Climatec, Japan
Soil temperature
0, 0.02,
0.05 m (3 points),
0.15, 0.3, 0.6 m Platinum resistance thermometer:
C-PTWP, Climatec, Japan
Ground heat flux
0.02 m (3 points)
Heat flux plate: PHF-01, REBS
Soil water content
0 m (3 points),
0.1, 0.2 m (2 points) TDR sensor: CS616, Campbell
Barometric pressure
1.5 m Barometer: PTB210, Vaisala
Precipitation 32 m Tipping-bucket rain gauge with heater : CYG-52202, R. M. Young
Snow depth 2 m Sonic ranging sensor:SR50,Campbell
Spectral radiation(incoming)
Global, direct/diffuse,
transmitted
32, 2 m Spectroradiometer: MS-700, Eko,
Japan with shadow band (32 m;
PRB-100, PREDE, Japan)
Spectral radiation reflected,
transmitted (outgoing) 30 m Spectroradiometer: MS-700, Eko,
Japan (Jan. 2006 - Apr. 15, 2014); MS-700 with automated masking device to exclude contaminated reflection (Apr. 15, 2014- (Ide et al., 2016))
Spectral radiation reflected,
transmitted (outgoing,below canopy) 2 m Spectroradiometer: MS-700, Eko, Japan (Jan. 2006 -)
CO2 concentration
35, 32, 27, 22,
16,10, 4.5, 2, 1,
0.5 m Closed-path CO2/H2O analyzer:
LI-6262, LI-COR (Mar.2006-Jul.2010)

Fluxes of non-CO2 gases
Gas
CH4
Method Hyperbolic relaxed eddy accumulation (HREA) method with
a laser-based analyzer (GGA-24r-EP, Los Gatos Research
Inc., USA), from Aug. 2011 to Sep. 2012 (Ueyama et al.,
2013)
Automated dynamic closed (non-steady-state through-flow)
chambers with a laser-based analyzer (GGE-24r-EP), from
Oct. 2012 (Ueyama et al., 2015)
Measurement height
35, 28, 18, 5, and 0.3m (HREA method), 0m (chambers)
Data logger
Laptop PC via serial communication
Data storage
-
Observation Period and Data Availability
Measurement Period
January 2006 to present
Measurement Frequency
Continuous
Data Availability
2006-2023 in AsiaFlux Database

Contact
Ryuichi Hirata (hirata.ryuichi [at] nies.go.jp)
Center for Global Environmental Research (CGER),
Earth System Division,
National Institute for Environmental Studies (NIES)
16-2 Onogawa, Tsukuba, Ibaraki 305-8506 JAPAN
Tel : +81-29-850-2202 Fax : +81-29-858-2645
https://esd.nies.go.jp/en/about/organization/tm/
Researcher #1 [Flux and micrometeorology]
Yoshiyuki Takahashi (yoshiyu [at] nies.go.jp), CGER/NIES
Researcher #2 [Soil respiration]
Naishen Liang (liang [at] nies.go.jp), CGER/NIES
Observations cont.
Soil respiration
Measurement method
Automated dynamic closed chamber
method (flow-through, non-steady-state design using IRGA and Integrated Cavity Output Spectroscopy
(CH4/CO2))
References for method
Teramoto M., Liang N., Takahashi Y.,
Zeng J., Saigusa N., Ide R., Zhao X.,
2019: Enhanced understory carbon flux components and robustness of net
CO2 exchange after thinning in a larch
forest in central Japan. Agricultural and
Forest Meteorology, 274, 106-117.
Teramoto M., Liang N., Zeng J.,
Saigusa N., Takahashi Y., 2017: Long-
term chamber measurements reveal
strong impacts of soil temperature on
seasonal and inter-annual variation in
understory CO2 fluxes in a Japanese
larch (Larix kaempferi Sarg.) forest.
Agricultural and Forest Meteorology,
247, 194-206.
Measuring system
A 24-channel automated chamber
system (home-made by the
investigator)
IRGA
Integrated Cavity Output
Spectroscopy
Li-820 (LI-COR), UGGA (LGR)
Flow control
High-precision flow transducer (FSM-V, CKD) and manual flow regulator
Chamber type
Clear PVC chamber
Chamber size
90cm in length ×ばつ 90cm in width ×ばつ
50cm in height (8 chambers for soil
respiration and 8 chambers for
heterotrophic respiration), and 90cm in
length ×ばつ 90cm in width ×ばつ 100cm in
height (8 chambers for net understory
CO2 exchange).
Number of chambers
24
Measuring intervals
The mesurement period, during which
the chamber lids were closed, was
2.5min for each chamber with data
recorded at 10-s intervals using
CR1000 datalogger (Campbell
Scientific Inc.) from 2006 to 2009.
The measurement period was 5.0min
from 2010 on.
Is the ground covered by snow
in winter (how about the
measurement on winter?) Missing soil CO2 efflux data (gaps)
during snow covered period were
estimated based on Lloyd and Taylor
equation for each chamber.
Original data
Raw data
Air temperature collection
Air temperature inside each chamber
was measured using the home-made
T-Type thermocouple.
Soil temperature collection
Soil temperature at the depth of 5-cm
inside each chamber was measured
using the home-made T-Type
thermocouple.
Air pressure collection
Air pressure was measured using
PX2760 (Omega Engineering)
Understory PPFD collection
6 sensors (SQ225; Apogee
Instruments Inc.) at the height of 1m
around plant chambers
Soil moisture collection
6 CS616 (Campbell Scientific Inc.)
were used for monitoring soil moisture
at the depth of 10cm in 6 randomly
selected chambers (two chambers for
each treatment).

Other
Photosynthesis Occasionally
Ecological Investigation
Tree heights (every 5 years), stand density (annual), diameter (annual), biomass, LAI
Phenology Continuous (photos)

Calibration Information
Open-path analyzers were calibrated approximately every two months with standard CO2 gases and a dew point generator (LI610, LI-COR).

The gain of CO2 of the closed-path analyzers was checked once a day
flowing two standard CO2 gases of 320 ppmv and 420 ppmv that were
automatically controlled using a programmable data logger (CR23X
during 2006-mid-2007 and CR3000 after that, both were made by
Campbell Scientific, Logan, UT, USA.)







Infrastructure
Tower (35m), Electrical power (AC), Internet communications is
available.



Research Fund
Global Environmental Monitoring funded by National Institute for Environmental Studies
Global Environmental Research Coordination System from Ministry of the Environment of Japan (NOU0751, NOU1251, NOU2254)
Global Environment Research Fund from Ministry of the Environment of Japan (B-3)
Environment Research and Technology Development Fund from Ministry of the Environment of Japan (2-1705, 2-2006)

Publication

Okano T., Arase T. 2007: Biomass measurement of larch forest in Fuji Hokuroku Flux Research Site, Annual Report of Global Environment Monitoring H19, Center for Global Environmental Research, National Institute for Environmental Studies. (in Japanese)

Arase T. 2012: Estimation of Seasonal Changes in the Biomass of Forest Floor Vegetation in a Larch Forest at the Northern Foot of Mt. Fuji, Japan. Journal of Environmental Information Science, 40-5, 23-30.

Maki M., Takahashi A., Okano T., OgumaH. 2012: Development of the method to estimate light environment on forest floor using 3D portable laser scanner and radiative transfer model. Journal of The Remote Sensing Society of Japan, 32-2, 77-87.

Ueyama M., Takai Y., Takahashi Y., Ide R., Hamotani K., Kosugi Y., Takahashi K., Saigusa N. 2013: High-precision measurements of the methane flux over a larch forest based on a hyperbolic relaxed eddy accumulation method using a laser spectrometer. Agricultural and Forest Meteorology, 178,183-193.

Mochizuki T., Tani A., Takahashi Y.,Saigusa N., Ueyama M. 2014: Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method. Atmospheric Environment 83, 53-61.

Ueyama M., Takanashi S., Takahashi Y.2014 Inferring methane fluxes at a larch forest using Lagrangian, Eulerian, and hybrid inverse models. Journal of Geophysical Research: Biogeosciences, 119 (10), 2018-2031.

Urakawa R., Ohte N., Shibata H., Tateno R., Hishi T., Fukushima K., Inagaki Y., Hirai K., Oda T., Oyanagi N., Nakata M., Toda H., Kenta T., Fukuzawa K., Watanabe T., Tokuchi N., Nakaji T., Saigusa N., Yamao Y., Nakanishi A., Enoki T., Ugawa S., Hayakawa A., Kotani A., Kuroiwa M., Isobe K. 2015: Biogeochemical nitrogen properties of forest soils in the Japanese archipelago. Ecological Research,30(1), 1-2.

Akitsu K. T., Nakaji T., Kobayashi H.,Okano T., Honda Y., Bayarsaikhan U., Terigele, Hayashi M., Hiura T., Ide R.,Igarashi S., Kajiwara K., Kumikawa S., Matsuoka Y. Nakano T., Nakano T., OkudaA., Sato T., Tachiiri K., Takahashi Y., Uchida J., Nasahara N. K. 2020: Large-scale ecological field data for satellite validation in deciduous forests and grasslands. Ecological Research, 35(6), 1009-1028.

Ueyama M., Takeuchi R., Takahashi Y.,Ide R., Ataka M., Kosugi Y., Takahashi K., Saigusa N. 2015: Methane uptake in a temperate forest soil using continuous closed-chamber measurements. Agricultural and Forest Meteorology, 213, 1-9.

Takahashi Y., Saigusa N., Hirata R., IdeR., Fujinuma Y., Okano T., Asarse T., 2015: Characteristics of temporal variations in ecosystem CO2 exchange in a temperate deciduous needle-leaf forest in the foothills of a high mountain. Journal of Agricultural Meteorology, 71(4), 302-317.

Mochizuki T., Miyazaki Y., Ono K., Wada R., Takahashi Y., Saigusa N., Kawamura K., Tani A. 2015: Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest.Atmospheric Chemistry and Physics,15, 1-13.

Urakawa R., Ohte N., Shibata H., Isobe K., Tateno R., Oda T., Hishi T., Fukushima K., Inagaki Y., Hirai K., Oyanagi N., Nakata M., Toda H., Kenta T., Kuroiwa M., Watanabe T., Fukuzawa K., TokuchiN., Ugawa S., Enoki T., Nakanishi A., Saigusa N., Yamao Y., Kotani A. 2016: Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. Forest Ecology and Management, 361, 382-396.

Ide R., Hirose Y., Oguma H., Saigusa N.2016: Development of a masking device to exclude contaminated reflection during tower-based measurements of spectral reflectance from a vegetation canopy. Agricultural and Forest Meteorology, 223, 141-150.

Teramoto M., Liang N., Zeng J., Saigusa N., Takahashi Y., 2017: Long-term chamber measurements reveal strong impacts of soil temperature on seasonal and inter-annual variation in understory CO2 fluxes in a Japanese larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology, 247, 194-206.

Teramoto M., Liang N., Takahashi Y.,Zeng J., Saigusa N., Ide R., Xin Zhao 2019: Enhanced understory carbon flux components and robustness of net CO2 exchange after thinning in a larch forest in central Japan. Agricultural and Forest Meteorology, 274, 106-117.


Please refer below webpage.

http://db.cger.nies.go.jp/gem/moni-e/warm/flux/pub.html

You'll need Skype CreditFree via Skype
Powered by NetCommons2 The NetCommons Project

AltStyle によって変換されたページ (->オリジナル) /