NCL Home> Documentation> Functions> General applied math, Statistics

regline

Calculates the linear regression coefficient between two series.

Prototype

	function regline (
		x [*] : numeric, 
		y [*] : numeric 
	)
	return_val [1] : float or double

Arguments

x
y

One-dimensional arrays of the same length. Missing values should be indicated by x@_FillValue and y@_FillValue. If x@_FillValue or y@_FillValue are not set, then the NCL default (appropriate to the type of x and y) will be assumed.

Return value

The return value is a scalar of type double if either x or y are double, and float otherwise. Some attributes are returned as well. See the description below.

Description

regline computes the information needed to construct a regression line: regression coefficient (trend, slope,...) and the average of the x and y values. regline is designed to work with one-dimensional x and y arrays. Missing data are allowed.

regline also returns the following attributes:

xave (scalar, float or double, depending on x and y)
average of x
yave (scalar, float or double, depending on x and y)
average of y
tval (scalar, float or double, depending on x and y)
t-statistic (assuming null-hypothesis)
rstd (scalar, float or double, depending on x and y)
standard error of the regression coefficient
yintercept (scalar, float or double, depending on x and y)
y-intercept at x=0
nptxy (scalar, integer)
number of points used

If the regression coefficients for multi-dimensional arrays are needed, use regCoef.

If the series is autocorrelated the returned degrees of freedom must be recalculated. See Example 2.

 Taking Serial Correlation into Account in Tests of the Mean
 F. W. Zwiers and H. von Storch, J. Climate 1995, pp336- 

See Also

regline_stats, regCoef, regCoef_n, reg_multlin_stats, equiv_sample_size, rtest

Examples

Example 1

The following example was taken from:

 Brownlee
 Statistical Theory and Methodology
 J Wiley 1965 pgs: 342-346 QA276 .B77
The regression line information for the example below is: (a) rc=0.9746, (b) tval=38.7, (c) nptxy=18 which yields 16 degrees of freedom (df=nptxy-2). To test the null hypothesis (i.e., rc=0) at the two-tailed 95% level, we note that t(16) is 2.120 (table look-up: 0.975). Clearly, the calculated t-statistic greatly exceeds 2.120 so the null hypothesis is rejected at the 5% level.

Rather than a table lookup, the following could be used to calculate the actual significance level.

 alpha = betainc(df/(df+rc@tval^2), df/2.0, 0.5)
or, alternatively,
 prob = 1 - betainc(df/(df+rc@tval^2), df/2.0, 0.5)
The example series are:
 x = (/ 1190.,1455.,1550.,1730.,1745.,1770. \
 , 1900.,1920.,1960.,2295.,2335.,2490. \
 , 2720.,2710.,2530.,2900.,2760.,3010. /)
 
 y = (/ 1115.,1425.,1515.,1795.,1715.,1710. \
 , 1830.,1920.,1970.,2300.,2280.,2520. \
 , 2630.,2740.,2390.,2800.,2630.,2970. /)
 
 rc = regline (x,y)
 
 ; Note use of attributes
 df = rc@nptxy-2
 prob = (1 - betainc(df/(df+rc@tval^2), df/2.0, 0.5) )
 
 yReg = rc*x + rc@yintercept ; NCL array notation 
 ; yReg is same length as x, y
 print(rc)
 
 print("prob="+prob)
 
 print(yReg)
The "print(rc)" statement will yield:
Variable: rc
Type: float
Total Size: 4 bytes
 1 values
Number of Dimensions: 1
Dimensions and sizes: [1]
Coordinates: 
Number Of Attributes: 7
 _FillValue : -999
 yintercept : 15.35229
 yave : 2125.278
 xave : 2165
 nptxy : 18
 rstd : 0.025155
 tval : 38.74286
(0) 0.9745615
(0) prob=1

The "print(yReg)" statement will yield:

Variable: yReg
Type: float
Total Size: 72 bytes
 18 values
Number of Dimensions: 1
Dimensions and sizes: [18]
Coordinates: 
Number Of Attributes: 1
 _FillValue : -999
(0) 1175.08
(1) 1433.339
(2) 1525.923
(3) 1701.344
(4) 1715.962
(5) 1740.326
(6) 1867.019
(7) 1886.51
(8) 1925.493
(9) 2251.971
(10) 2290.953
(11) 2442.01
(12) 2666.159
(13) 2656.414
(14) 2480.993
(15) 2841.581
(16) 2705.142
(17) 2948.782

Note 1: The above assumes that all the points are independent. If this is not the case, then the number used to test for significance should be less.

Note 2: To construct 95% confidence limits for the hypothesis that the regression coefficient is one (i.e., rc=1) :

  • As noted above, the t for 0.975 and 16 degrees of freedom is 2.120 [table look-up].
  • rc@rstd * 2.12 = 0.053. This yields 95% confidence limits of (0.97-0.053) < 0.97 < (0.97+0.053) or (0.92 to 1.03). Thus, the hypothesis that rc=1 can not be rejected.

Example 2

Often geophysical time series are correlated. If the auto-correlation is significant [specified, a priori, by the user], then the degrees of freedom returned should be adjusted. The adjusted dof should be used in the calculation of the regression coefficient significance. Example 1 used:

 
 rc = regline (x,y)
 df = rc@nptxy-2
 prob = (1 - betainc(df/(df+rc@tval^2), df/2.0, 0.5) )
A-priori, let's set the lag-1 autocorrelation significance level at (say) 0.10.
 N = rc@nptxy ; convenience/clarity
 acr = esacr(y,2)
 if (acr(1).gt.0.0) then
 pr1 = rtest(acr(1), N, 0)
 rsiglvl = 0.10
 if (pr1.lt.rsiglvl) then
 df = N*(1.0-acr(1))/(1.0+acr(1))
 prob = (1 - betainc(df/(df+rc@tval^2), df/2.0, 0.5) )
 end if
 end if

Example 3

Use the 'Old Faithful' data set used by several R regression examples Here, we use NCL's regline and the ANOVA version regline_stats.

Simplefied R code:
 eruption.lm = lm(eruptions ~ waiting, data=faithful)
 summary(eruption.lm) 
Summary output:
 Call: 
 lm(formula = eruptions ~ waiting, data = faithful) 
 
 Residuals: 
 Min 1Q Median 3Q Max 
 -1.2992 -0.3769 0.0351 0.3491 1.1933 
 
 Coefficients: 
 Estimate Std. Error t value Pr(>|t|) 
  (Intercept) -1.87402 0.16014 -11.7 <2e-16 *** waiting 0.07563 0.00222 34.1 <2e-16 *** 
 --- 
 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 
 
 Residual standard error: 0.497 on 270 degrees of freedom 
 Multiple R-squared: 0.811, Adjusted R-squared: 0.811 
  
The NCL code is:
 diri = "./"
 fili = "faithful_R.dat"
 pthi = diri + fili
 ncol = 3
 data = readAsciiTable(pthi, ncol, "float", 1)
 x = data(:,2) ; eruption interval (minutes); independent
 y = data(:,1) ; eruption duration (minutes); dependent
 nxy = dimsizes(y)
 x@long_name = "Eruption Interval (min)"
 y@long_name = "Eruption Duration (min)"
 ;print("============ OLD Faithful================")
 ;print(sprintf("%4.0f", x)+" "+sprintf("%4.0f", y))
 ;print("=========================================")
;---Assorted statistics and regression line fit
 ;rxy = escorc(x,y) ; cross-correlation
 ;print(rxy)
 ;print("=========================================")
 rcl = regline(x, y) ; basic linear regression
 print(rcl)
 df = rcl@nptxy-2
 prob = (1 - betainc(df/(df+rcl@tval^2), df/2.0, 0.5) )
 print("=========================================")
 rcl_anova = regline_stats(x,y) ; linear regression: ANOVA
 print(rcl_anova)
 print("=========================================")
The (slightly) edited output is:
 Variable: rcl
 Type: float
 Total Size: 4 bytes
 1 values
 Number of Dimensions: 1
 Dimensions and sizes:	[1]
 Coordinates: 
 Number Of Attributes: 7
 _FillValue :	9.96921e+36
 yintercept :	-1.874016
 yave :	3.487783
 xave :	70.89706
 nptxy :	272
 rstd :	0.002218541
 tval :	34.08904
 (0)	0.07562795
 (0)	=========================================
 
 
 Variable: rcl_anova
 Type: float
 Total Size: 4 bytes
 1 values
 Number of Dimensions: 1
 Dimensions and sizes:	[1]
 Coordinates: 
 Number Of Attributes: 44
 _FillValue :	9.96921e+36
 long_name :	simple linear regression
 model :	Yest = b(0) + b(1)*X
 N :	272
 NP :	1
 M :	2
 bstd :	( 0, 0.9008112 )
 SST :	353.0395
 SSE :	66.56177
 SSR :	286.4776
 MST :	1.302729
 MSE :	0.2465251
 MSE_dof :	270
 MSR :	286.4776
 RSE :	0.4965129
 RSE_dof :	269
 F :	1162.063
 F_dof :	( 1, 270 )
 F_pval :	 0
 r2 :	0.8114605
 r :	0.900811
 r2a :	0.8107622
 fuv :	0.1885395
 Yest :	
 Yavg :	3.487783
 Ystd :	1.141371
 Xavg :	70.89706
 Xstd :	13.59497
 stderr :	( 0.1601433, 0.002218541 )
 tval :	( -11.70212, 34.08904 )
 pval :	( 7.089058e-26, 0 )
 nptxy :	272
 xave :	70.89706
 yave :	3.487783
 rstd :	0.4965129
 yintercept :	-1.874016
 b :	( -1.874016, 0.07562795 )
 tnull :	34.08905
 b95 :	( 0.07126011, 0.07999578 )
 y95 :	( -2.189304, -1.558728 )
 YMR025 :	
 YMR975 :	
 YPI025 :	
 YPI975 :	
 (0)	0.07562795


AltStyle によって変換されたページ (->オリジナル) /