Skip to content [フレーム]
1887

Research Article

Open Access

A contemporary genomic snapshot of Salmonella Paratyphi A in Pakistan Open Access

Abstract

Salmonella enterica serovar Paratyphi A is a significant but under-characterised cause of enteric fever in South Asia. In Pakistan, where the typhoid conjugate vaccine has been introduced to combat S. Typhi, S. Paratyphi A remains a prominent cause of bacteraemia, raising concerns about shifts in disease burden and antimicrobial resistance (AMR). Here, we provide a comprehensive genomic and phylogenetic analysis of 354 S. Paratyphi A isolates collected from three provinces in Pakistan between 2017 and early 2022. Whole-genome sequencing revealed the dominance of genotypes 2.3.3 and 2.4.5, indicating a largely stable population structure over time, and the presence of widespread fluoroquinolone-associated gyrA mutations. Although multidrug resistance was not detected, we identified one isolate harbouring an acrB-R717Q mutation associated with azithromycin resistance. Plasmid and replicon analysis revealed low prevalence of extrachromosomal elements, including cryptic plasmids with unknown function. Phylogenetic placement of these isolates in a global context demonstrated close relatedness to contemporary South Asian organisms. Our findings establish a genomic baseline for S. Paratyphi A in Pakistan, essential for future surveillance, AMR monitoring, and evaluating the potential impact of forthcoming paratyphoid vaccines.

  • Received:
  • Accepted:
  • Published Online:
Funding
This study was supported by the:
  • Wellcome Trust (Award 215515/Z/19/Z)
    • Principal Award Recipient: StephenBaker
  • Bill and Melinda Gates Foundation (Award INV-030857)
    • Principal Award Recipient: NotApplicable
© 2025 The Authors
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001561
2025年11月11日
2025年11月15日

Metrics

Download as PowerPoint
Loading full text...

Full text loading...

/deliver/fulltext/mgen/11/11/mgen001561.html?itemId=/content/journal/mgen/10.1099/mgen.0.001561&mimeType=html&fmt=ahah

References

  1. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015; 28:901–937
    [Google Scholar]
  2. Stanaway JD, Reiner RC, Blacker BF, Goldberg EM, Khalil IA et al. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 2019; 19:369–381 [View Article]
    [Google Scholar]
  3. Owais A, Sultana S, Zaman U, Rizvi A, Zaidi AKM. Incidence of typhoid bacteremia in infants and young children in southern coastal Pakistan. Pediatr Infect Dis J 2010; 29:1035–1039 [PubMed]
    [Google Scholar]
  4. Yousafzai MT, Irfan S, Thobani RS, Kazi AM, Hotwani A et al. Burden of culture confirmed enteric fever cases in Karachi, Pakistan: surveillance for enteric fever in Asia Project (SEAP), 2016-2019. Clin Infect Dis 2020; 71:S214–S221 [View Article] [PubMed]
    [Google Scholar]
  5. Qamar FN, Azmatullah A, Kazi AM, Khan E, Zaidi AKM. A three-year review of antimicrobial resistance of Salmonella enterica serovars Typhi and Paratyphi A in Pakistan. J Infect Dev Ctries 2014; 8:981–986 [View Article] [PubMed]
    [Google Scholar]
  6. Qamar FN, Yousafzai MT, Sultana S, Baig A, Shakoor S et al. A retrospective study of laboratory-based enteric fever surveillance, Pakistan, 2012-2014. J Infect Dis 2018; 218:S201–S205 [View Article] [PubMed]
    [Google Scholar]
  7. Qamar FN, Yousafzai MT, Dehraj IF, Shakoor S, Irfan S et al. Antimicrobial resistance in typhoidal Salmonella: surveillance for enteric fever in Asia Project, 2016-2019. Clin Infect Dis 2020; 71:S276–S284 [View Article] [PubMed]
    [Google Scholar]
  8. Carey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK et al. Global diversity and antimicrobial resistance of typhoid fever pathogens: insights from a meta-analysis of 13,000 Salmonella Typhi genomes. Elife 2023; 12:e85867 [View Article] [PubMed]
    [Google Scholar]
  9. Klemm EJ, Wong VK, Dougan G. Emergence of dominant multidrug-resistant bacterial clades: lessons from history and whole-genome sequencing. Proc Natl Acad Sci U S A 2018; 115:12872–12877 [View Article] [PubMed]
    [Google Scholar]
  10. Barkume C, Date K, Saha SK, Qamar FN, Sur D et al. Phase I of the Surveillance for Enteric Fever in Asia Project (SEAP): an overview and lessons learned. J Infect Dis 2018; 218:S188–S194 [View Article] [PubMed]
    [Google Scholar]
  11. Fasih F, Fatima A, Baig S, Naseem S, Tauheed MM et al. Antimicrobial susceptibility of bacteraemic isolates of Salmonella enterica serovar typhi and paratyphi infection in Pakistan from 2017-2020. J Pak Med Assoc 2023; 73:505–510 [View Article] [PubMed]
    [Google Scholar]
  12. Daud MK, Nafees M, Ali S, Rizwan M, Bajwa RA et al. Drinking water quality status and contamination in Pakistan. Biomed Res Int 2017; 2017:7908183 [View Article] [PubMed]
    [Google Scholar]
  13. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399:629–655 [View Article]
    [Google Scholar]
  14. Qamar FN, Yousafzai MT, Khalid M, Kazi AM, Lohana H et al. Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: a matched case-control study. Lancet Infect Dis 2018; 18:1368–1376 [View Article]
    [Google Scholar]
  15. Yousafzai MT, Karim S, Qureshi S, Kazi M, Memon H et al. Effectiveness of typhoid conjugate vaccine against culture-confirmed Salmonella enterica serotype Typhi in an extensively drug-resistant outbreak setting of Hyderabad, Pakistan: a cohort study. Lancet Glob Health 2021; 9:e1154–e1162 [View Article] [PubMed]
    [Google Scholar]
  16. WHO EMRO Pakistan first country to introduce new typhoid vaccine into routine immunization program; 2019
  17. Thobani RS, Yousafzai MT, Sultana S, Kazi AM, Jan M et al. Field evaluation of typhoid conjugate vaccine in a catch-up campaign among children aged 9 months to 15 years in Sindh, Pakistan. Vaccine 2022; 40:5391–5398 [View Article]
    [Google Scholar]
  18. Baker S, Karkey A, Parry C. Are we adequately prepared for the emergence of Salmonella enterica serovar Paratyphi A?. The Lancet Global Health 2014; 2:e195–e196 [View Article]
    [Google Scholar]
  19. Martin LB, Khanam F, Qadri F, Khalil I, Sikorski MJ et al. Vaccine value profile for Salmonella enterica serovar Paratyphi A. Vaccine 2023; 41:S114–S133 [View Article]
    [Google Scholar]
  20. Rahman SIA, Nguyen TNT, Khanam F, Thomson NR, Dyson ZA et al. Genetic diversity of Salmonella Paratyphi A isolated from enteric fever patients in Bangladesh from 2008 to 2018. PLoS Negl Trop Dis 2021; 15:e0009748 [View Article]
    [Google Scholar]
  21. Holt KE, Thomson NR, Wain J, Phan MD, Nair S et al. Multidrug-resistant Salmonella enterica serovar paratyphi A harbors IncHI1 plasmids similar to those found in serovar typhi. J Bacteriol 2007; 189:4257–4264 [View Article] [PubMed]
    [Google Scholar]
  22. Maskey AP, Basnyat B, Thwaites GE, Campbell JI, Farrar JJ et al. Emerging trends in enteric fever in Nepal: 9124 cases confirmed by blood culture 1993-2003. Trans R Soc Trop Med Hyg 2008; 102:91–95 [View Article] [PubMed]
    [Google Scholar]
  23. Kuijpers LMF, Le Hello S, Fawal N, Fabre L, Tourdjman M et al. Genomic analysis of Salmonella enterica serotype Paratyphi A during an outbreak in Cambodia, 2013-2015. Microb Genom 2016; 2:e000092 [View Article] [PubMed]
    [Google Scholar]
  24. Britto CD, Dyson ZA, Duchene S, Carter MJ, Gurung M et al. Laboratory and molecular surveillance of paediatric typhoidal Salmonella in Nepal: antimicrobial resistance and implications for vaccine policy. PLoS Negl Trop Dis 2018; 12:e0006408 [View Article] [PubMed]
    [Google Scholar]
  25. Woods CW, Murdoch DR, Zimmerman MD, Glover WA, Basnyat B et al. Emergence of Salmonella enterica serotype Paratyphi A as a major cause of enteric fever in Kathmandu, Nepal. Trans R Soc Trop Med Hyg 2006; 100:1063–1067 [View Article] [PubMed]
    [Google Scholar]
  26. Nair S, Unnikrishnan M, Turner K, Parija SC, Churcher C et al. Molecular analysis of fluoroquinolone-resistant Salmonella Paratyphi A isolate, India. Emerg Infect Dis 2006; 12:489–491 [View Article] [PubMed]
    [Google Scholar]
  27. Mawatari M, Kato Y, Hayakawa K, Morita M, Yamada K et al. Salmonella enterica serotype Paratyphi A carrying CTX-M-15 type extended-spectrum beta-lactamase isolated from a Japanese traveller returning from India, Japan, July 2013. Euro Surveill 2013; 18:20632 [View Article] [PubMed]
    [Google Scholar]
  28. Molloy A, Nair S, Cooke FJ, Wain J, Farrington M et al. First report of Salmonella enterica serotype paratyphi A azithromycin resistance leading to treatment failure. J Clin Microbiol 2010; 48:4655–4657 [View Article] [PubMed]
    [Google Scholar]
  29. Hooda Y, Sajib MSI, Rahman H, Luby SP, Bondy-Denomy J et al. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Negl Trop Dis 2019; 13:e0007868 [View Article] [PubMed]
    [Google Scholar]
  30. Nair S, Day M, Godbole G, Saluja T, Langridge GC et al. Genomic surveillance detects Salmonella enterica serovar Paratyphi A harbouring blaCTX-M-15 from a traveller returning from Bangladesh. PLoS One 2020; 15:e0228250 [View Article] [PubMed]
    [Google Scholar]
  31. Garrett DO, Longley AT, Aiemjoy K, Yousafzai MT, Hemlock C et al. Incidence of typhoid and paratyphoid fever in Bangladesh, Nepal, and Pakistan: results of the Surveillance for Enteric Fever in Asia Project. Lancet Glob Health 2022; 10:e978–e988 [View Article] [PubMed]
    [Google Scholar]
  32. Maskey AP, Day JN, Phung QT, Thwaites GE, Campbell JI et al. Salmonella enterica serovar Paratyphi A and S. enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu, Nepal. Clin Infect Dis 2006; 42:1247–1253 [View Article] [PubMed]
    [Google Scholar]
  33. Saha S, Sajib MSI, Garrett D, Qamar FN. Antimicrobial resistance in typhoidal Salmonella: around the world in 3 days. Clin Infect Dis 2020; 71:S91–S95 [View Article] [PubMed]
    [Google Scholar]
  34. Shakya M, Neuzil KM, Pollard AJ. Prospects of Future Typhoid and Paratyphoid Vaccines in Endemic Countries. J Infect Dis 2021; 224:S770–S774 [View Article] [PubMed]
    [Google Scholar]
  35. Low AJ, Koziol AG, Manninger PA, Blais B, Carrillo CD. ConFindr: rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. PeerJ 2019; 7:e6995 [View Article] [PubMed]
    [Google Scholar]
  36. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 2020; 38:276–278 [View Article] [PubMed]
    [Google Scholar]
  37. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  38. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article]
    [Google Scholar]
  39. Mylona E, Pham Thanh D, Keane JA, Dongol S, Basnyat B et al. A retrospective investigation of the population structure and geospatial distribution of Salmonella Paratyphi A in Kathmandu, Nepal. PLoS Negl Trop Dis 2024; 18:e0011864 [View Article] [PubMed]
    [Google Scholar]
  40. da Silva KE, Date K, Hirani N, LeBoa C, Jayaprasad N et al. Population structure and antimicrobial resistance patterns of Salmonella Typhi and Paratyphi A amid a phased municipal vaccination campaign in Navi Mumbai, India. mBio 2023; 14:e0117923 [View Article] [PubMed]
    [Google Scholar]
  41. Britto CD, Dyson ZA, Mathias S, Bosco A, Dougan G et al. Persistent circulation of a fluoroquinolone-resistant Salmonella enterica Typhi clone in the Indian subcontinent. J Antimicrob Chemother 2020; 75:337–341 [View Article] [PubMed]
    [Google Scholar]
  42. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  43. Tanmoy AM, Hooda Y, Sajib MSI, da Silva KE, Iqbal J et al. Paratype: a genotyping tool for Salmonella Paratyphi A reveals its global genomic diversity. Nat Commun 2022; 13:7912 [View Article] [PubMed]
    [Google Scholar]
  44. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  45. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  46. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo assembler. Curr Protoc Bioinform 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  47. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J et al. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 2021; 11:12728 [View Article] [PubMed]
    [Google Scholar]
  48. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  49. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  50. Wickham H, Francois R, Henry L, Müller K, Vaughan D. dplyr: a grammar of data manipulation; 2023
  51. Wickham H. Ggplot2: Elegant Graphics for Data Analysis New York: Springer-Verlag; 2016
    [Google Scholar]
  52. Huang H, Li J, Yang XL, Wang YG, Wang YP et al. Sequence analysis of the plasmid pGY1 harbored in Salmonella enterica serovar paratyphi A. Biochem Genet 2009; 47:191–197 [View Article] [PubMed]
    [Google Scholar]
  53. Hooda Y, Tanmoy AM, Saha SK, Saha S. Neglected no more?. Open Forum Infect Dis 2023; 10:S53–S57 [View Article]
    [Google Scholar]
  54. Siddiqui FJ, Rabbani F, Hasan R, Nizami SQ, Bhutta ZA. Typhoid fever in children: some epidemiological considerations from Karachi, Pakistan. Int J Infect Dis 2006; 10:215–222 [View Article] [PubMed]
    [Google Scholar]
  55. Park SE, Pham DT, Boinett C, Wong VK, Pak GD et al. The phylogeography and incidence of multi-drug resistant typhoid fever in sub-Saharan Africa. Nat Commun 2018; 9:9 [View Article]
    [Google Scholar]
  56. Rahman SIA, Dyson ZA, Klemm EJ, Khanam F, Holt KE et al. Population structure and antimicrobial resistance patterns of Salmonella Typhi isolates in urban Dhaka, Bangladesh from 2004 to 2016. PLoS Negl Trop Dis 2020; 14:e0008036 [View Article] [PubMed]
    [Google Scholar]
  57. Sajib MSI, Tanmoy AM, Hooda Y, Rahman H, Andrews JR et al. Tracking the emergence of azithromycin resistance in multiple genotypes of typhoidal Salmonella. mBio 2021; 12:e03481-20 [View Article] [PubMed]
    [Google Scholar]
  58. Iqbal J, Dehraj IF, Carey ME, Dyson ZA, Garrett D et al. A race against time: reduced azithromycin susceptibility in Salmonella enterica serovar Typhi in Pakistan. mSphere 2020; 5:e00215-20 [View Article] [PubMed]
    [Google Scholar]
  59. Wang Y, Dagan T. The evolution of antibiotic resistance islands occurs within the framework of plasmid lineages. Nat Commun 2024; 15:1–13 [View Article]
    [Google Scholar]
  60. Muraya A, Kyany’a C, Kiyaga S, Smith HJ, Kibet C et al. Antimicrobial resistance and virulence characteristics of Klebsiella pneumoniae isolates in kenya by whole-genome sequencing. Pathogens 2022; 11:545 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001561
Loading
A contemporary genomic snapshot of Salmonella Paratyphi A in Pakistan
M Gen 11, 001561 (2025); https://doi.org/10.1099/mgen.0.001561
/content/journal/mgen/10.1099/mgen.0.001561
/content/journal/mgen/10.1099/mgen.0.001561
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most read this month

Article
content/journal/mgen
Journal
5
3
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error
Microbiology Society:
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001561
10.1099/mgen.0.001561
SEARCH_EXPAND_ITEM

AltStyle によって変換されたページ (->オリジナル) /