Skip to content [フレーム]
1887

Research Article

Open Access

Metagenomics of the MAST-3 stramenopile, Incisomonas, and its associated microbiome reveals unexpected metabolic attributes and extensive nutrient dependencies Open Access

Abstract

Protists are polyphyletic single-celled eukaryotes that underpin global ecosystem functioning, particularly in the oceans. Most remain uncultured, limiting the investigation of their physiology and cell biology. MArine STramenopiles (MASTs) are heterotrophic protists that, although related to well-characterized photosynthetic diatoms and parasitic oomycetes, are poorly studied. The Nanomonadea (MAST-3) species Incisomonas marina has been maintained in co-culture with a bacterial consortium, offering opportunities to investigate the metabolic attributes and nutritional dependencies of the community. Employing a metagenomics approach, the 68 Mbp haploid genome of I. marina was retrieved to an estimated completeness of 93%, representing the most complete MAST genome so far. We also characterized the diversity of, and assembled genomes for, 23 co-cultured bacteria. Auxotrophy of I. marina for B vitamins (B1, B2, B6, B7 and B12), but not vitamins C, B3, B5 and B9, was predicted. Several bacteria also lacked complete B-vitamin biosynthesis pathways, suggesting that vitamins and/or their precursors are exchanged in the consortium. Moreover, I. marina lacked the ability to synthesize half the protein amino acids, although genes encoding the complete urea cycle were identified, like diatoms; this may play a role in recycling organic nitrogen compounds. Unexpectedly, we also identified the gene DSYB for dimethylsulphoniopropionate biosynthesis. Biosynthesis of this important stress protectant and bacterial chemoattractant is typically found in photosynthetic eukaryotes and has not been identified before in heterotrophic stramenopiles. Together, our study reveals the metabolic attributes of a hitherto understudied organism, advancing knowledge of the evolution and adaptations of the stramenopiles and informing future culturing efforts.

  • Received:
  • Accepted:
  • Published Online:
Funding
This study was supported by the:
  • Leverhulme Trust (Award RPG 2017–077)
    • Principal Award Recipient: Gail SmithAlison
  • Royal Society (Award URF\R1180537円)
    • Principal Award Recipient: MonierAdam
  • Natural Environment Research Council (Award NE/L002507/1)
    • Principal Award Recipient: E AbsolonDominic
  • Natural Environment Research Council (Award NE/R015449/2)
    • Principal Award Recipient: E HelliwellKatherine
© 2025 The Authors
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001510
2025年11月13日
2025年11月15日

Metrics

Download as PowerPoint
Loading full text...

Full text loading...

/deliver/fulltext/mgen/11/11/mgen001510.html?itemId=/content/journal/mgen/10.1099/mgen.0.001510&mimeType=html&fmt=ahah

References

  1. Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 2015; 347: [View Article]
    [Google Scholar]
  2. del Campo J, Sieracki ME, Molestina R, Keeling P, Massana R et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol 2014; 29:252–259 [View Article] [PubMed]
    [Google Scholar]
  3. Massana R, Castresana J, Balagué V, Guillou L, Romari K et al. Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 2004; 70:3528–3534 [View Article] [PubMed]
    [Google Scholar]
  4. Seeleuthner Y, Mondy S, Lombard V, Carradec Q, Pelletier E et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat Commun 2018; 9:310 Epub ahead of print 1 December 2018 [View Article] [PubMed]
    [Google Scholar]
  5. Logares R, Audic S, Bass D, Bittner L, Boutte C et al. Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 2014; 24:813–821 [View Article] [PubMed]
    [Google Scholar]
  6. Massana R, del Campo J, Sieracki ME, Audic S, Logares R. Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 2014; 8:854–866 [View Article] [PubMed]
    [Google Scholar]
  7. Logares R, Audic S, Santini S, Pernice MC, de Vargas C et al. Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 2012; 6:1823–1833 [View Article] [PubMed]
    [Google Scholar]
  8. Orsi W, Edgcomb V, Jeon S, Leslin C, Bunge J et al. Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. ISME J 2011; 5:1357–1373 [View Article] [PubMed]
    [Google Scholar]
  9. Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C. Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 2006; 8:1515–1522 [View Article] [PubMed]
    [Google Scholar]
  10. Lyu L, Wang Q, Wang G. Cultivation and diversity analysis of novel marine thraustochytrids. Mar Life Sci Technol 2021; 3:263–275 [View Article] [PubMed]
    [Google Scholar]
  11. Armbrust EV. The life of diatoms in the world’s oceans. Nature 2009; 459:185–192 [View Article] [PubMed]
    [Google Scholar]
  12. Obiol A, del Campo J, de Vargas C, Mahé F, Massana R. How marine are marine stramenopiles (MAST)? a cross-system evaluation. FEMS Microbiology Ecology 2024; 100: [View Article]
    [Google Scholar]
  13. Gómez F, Simão TLL, Utz LRP, Lopes RM. The nature of the diatom Leptocylindrus mediterraneus (Bacillariophyceae), host of the enigmatic symbiosis with the stramenopile Solenicola setigera. Phycologia 2016; 55:265–273 [View Article]
    [Google Scholar]
  14. Cavalier-Smith T, Scoble JM. Phylogeny of heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that actinophryida evolved from raphidophytes. Eur J Protistol 2013; 49:328–353 [View Article] [PubMed]
    [Google Scholar]
  15. Shiratori T, Thakur R, Ishida K-I. Pseudophyllomitus vesiculosus (Larsen and Patterson 1990) Lee, 2002, a poorly studied phagotrophic biflagellate is the first characterized member of stramenopile environmental clade MAST-6. Protist 2017; 168:439–451 [View Article] [PubMed]
    [Google Scholar]
  16. Labarre A, López-Escardó D, Latorre F, Leonard G, Bucchini F et al. Comparative genomics reveals new functional insights in uncultured MAST species. ISME J 2021; 15:1767–1781 [View Article]
    [Google Scholar]
  17. Latorre F, Deutschmann IM, Labarre A, Obiol A, Krabberød AK et al. Niche adaptation promoted the evolutionary diversification of tiny ocean predators. Proc Natl Acad Sci USA 2021; 118: Epub ahead of print 22 June 2021 [View Article]
    [Google Scholar]
  18. Derelle R, López-García P, Timpano H, Moreira D. A phylogenomic framework to study the diversity and evolution of stramenopiles (=Heterokonts). Mol Biol Evol 2016; 33:2890–2898 [View Article] [PubMed]
    [Google Scholar]
  19. Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. ISME J 2024; 18:wrae150 [View Article] [PubMed]
    [Google Scholar]
  20. Kamikawa R, Mochizuki T, Sakamoto M, Tanizawa Y, Nakayama T et al. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida. Sci Adv 2022; 8:eabi5075 [View Article] [PubMed]
    [Google Scholar]
  21. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004; 306:79–86
    [Google Scholar]
  22. Dorrell RG, Smith AG. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 2011; 10:856–868 [View Article] [PubMed]
    [Google Scholar]
  23. Sibbald SJ, Archibald JM. Genomic insights into plastid evolution. Genome Biol Evol 2020; 12:978–990 [View Article] [PubMed]
    [Google Scholar]
  24. Meyer N, Rydzyk A, Pohnert G. Pronounced uptake and metabolism of organic substrates by diatoms revealed by pulse-labeling metabolomics. Front Mar Sci 2022; 9:821167 [View Article]
    [Google Scholar]
  25. Perli T, Wronska AK, Ortiz-Merino RA, Pronk JT, Daran JM. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37:283–304 [View Article] [PubMed]
    [Google Scholar]
  26. Sultana S, Bruns S, Wilkes H, Simon M, Wienhausen G. Vitamin B12 is not shared by all marine prototrophic bacteria with their environment. ISME J 2023; 17:836–845 [View Article] [PubMed]
    [Google Scholar]
  27. Croft MT, Warren MJ, Smith AG. Algae need their vitamins. Eukaryot Cell 2006; 5:1175–1183 [View Article] [PubMed]
    [Google Scholar]
  28. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 2005; 438:90–93 [View Article] [PubMed]
    [Google Scholar]
  29. Cooper MB, Kazamia E, Helliwell KE, Kudahl UJ, Sayer A et al. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J 2019; 13:334–345 [View Article] [PubMed]
    [Google Scholar]
  30. Durham BP, Sharma S, Luo H, Smith CB, Amin SA et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci USA 2015; 112:453–457 [View Article] [PubMed]
    [Google Scholar]
  31. Needham DM, Poirier C, Bachy C, George EE, Wilken S et al. The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate. Nat Microbiol 2022; 7:1466–1479 [View Article] [PubMed]
    [Google Scholar]
  32. Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138–154 [View Article] [PubMed]
    [Google Scholar]
  33. Seymour JR, Simó R, Ahmed T, Stocker R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 2010; 329:342–345 [View Article]
    [Google Scholar]
  34. Curson ARJ, Liu J, Bermejo Martínez A, Green RT, Chan Y et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat Microbiol 2017; 2:17009 Epub ahead of print 2017 [View Article] [PubMed]
    [Google Scholar]
  35. Wang J, Curson ARJ, Zhou S, Carrión O, Liu J et al. Alternative dimethylsulfoniopropionate biosynthesis enzymes in diverse and abundant microorganisms. Nat Microbiol 2024; 9:1979–1992 [View Article]
    [Google Scholar]
  36. Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article]
    [Google Scholar]
  37. Fukasawa Y, Ermini L, Wang H, Carty K, Cheung MS. LongQC: A quality control tool for third generation sequencing long read data. G3 Genes|Genomes|Genetics 2020; 10:1193–1196 [View Article]
    [Google Scholar]
  38. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  39. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  40. Bonenfant Q, Noé L, Touzet H. Porechop_ABI: discovering unknown adapters in Oxford Nanopore Technology sequencing reads for downstream trimming. Bioinformatics Advances 2023; 3: [View Article]
    [Google Scholar]
  41. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 2020; 17:1103–1110 [View Article] [PubMed]
    [Google Scholar]
  42. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  43. Astashyn A, Tvedte ES, Sweeney D, Sapojnikov V, Bouk N et al. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biol 2024; 25:60 [View Article] [PubMed]
    [Google Scholar]
  44. Karlicki M, Antonowicz S, Karnkowska A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics 2022; 38:344–350 [View Article] [PubMed]
    [Google Scholar]
  45. Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and smudgeplot for reference-free profiling of polyploid genomes. Nat Commun 2020; 11:1432 [View Article] [PubMed]
    [Google Scholar]
  46. Ren J, Chaisson MJP. lra: A long read aligner for sequences and contigs. PLoS Comput Biol 2021; 17:e1009078 [View Article]
    [Google Scholar]
  47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  48. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 2015; 3:e1319 Epub ahead of print 2015 [View Article] [PubMed]
    [Google Scholar]
  49. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article]
    [Google Scholar]
  50. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 2012; 28:2223–2230 [View Article] [PubMed]
    [Google Scholar]
  51. Gschloessl B, Guermeur Y, Cock JM. HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinformatics 2008; 9:1–13 [View Article] [PubMed]
    [Google Scholar]
  52. Vernette C, Lecubin J, Sánchez P, Sunagawa S, Delmont TO et al. The ocean gene atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes. Nucleic Acids Res 2022; 50:W516–W526 [View Article] [PubMed]
    [Google Scholar]
  53. Curson ARJ, Williams BT, Pinchbeck BJ, Sims LP, Martínez AB et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat Microbiol 2018; 3:430–439 [View Article] [PubMed]
    [Google Scholar]
  54. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  55. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article]
    [Google Scholar]
  56. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  57. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  58. Kanehisa M, Sato Y, Morishima K, Sternberg M. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  59. Guillard RRL. Purification methods for microalgae. In Algal Culturing Techniques Elsevier; 2005 pp 117–132
    [Google Scholar]
  60. Droop MR. A procedure for routine purification of algal cultures with antibiotics. British Phycological Bulletin 1967; 3:295–297 [View Article]
    [Google Scholar]
  61. Wilkens SL, Maas EW. Development of a novel technique for axenic isolation and culture of thraustochytrids from New Zealand marine environments. J Appl Microbiol 2012; 112:346–352 [View Article] [PubMed]
    [Google Scholar]
  62. Ferrante M, Annunziata R, Russo MT, Manfellotto F. Axenic Diatoms cultures protocol; 2020 https://dx.doi.org/10.17504/protocols.io.bgudjws6 accessed 28 July 2021
  63. Koedooder C, Stock W, Willems A, Mangelinckx S, De Troch M et al. Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Front Microbiol 2019; 10:1255 [View Article] [PubMed]
    [Google Scholar]
  64. Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 2012; 76:667–684 [View Article] [PubMed]
    [Google Scholar]
  65. Liang L, Zheng X, Fan W, Chen D, Huang Z et al. Genome and transcriptome analyses provide insight into the omega-3 long-chain polyunsaturated fatty acids biosynthesis of schizochytrium limacinum SR21. Front Microbiol 2020; 11:519814 [View Article]
    [Google Scholar]
  66. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 2006; 313:1261–1266 [View Article]
    [Google Scholar]
  67. Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J et al. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. MPMI 2012; 25:1350–1360 [View Article]
    [Google Scholar]
  68. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008; 456:239–244 [View Article]
    [Google Scholar]
  69. Hackl T, Martin R, Barenhoff K, Duponchel S, Heider D et al. Four high-quality draft genome assemblies of the marine heterotrophic nanoflagellate cafeteria roenbergensis. Sci Data 2020; 7:29 [View Article] [PubMed]
    [Google Scholar]
  70. Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C et al. Genome sequence of the stramenopile blastocystis, a human anaerobic parasite. Genome Biol 2011; 12: [View Article]
    [Google Scholar]
  71. Roberts WR, Siepielski AM, Alverson AJ. Diatom abundance in the polar oceans is predicted by genome size. PLoS Biol 2024; 22:e3002733 [View Article] [PubMed]
    [Google Scholar]
  72. McGowan J, Fitzpatrick DA. Recent advances in oomycete genomics. Adv Genet 2020; 105:175–228 [View Article] [PubMed]
    [Google Scholar]
  73. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics 2009; Chapter 4:4 [View Article] [PubMed]
    [Google Scholar]
  74. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research 2005; 33:W465–W467 [View Article]
    [Google Scholar]
  75. Delmont TO, Gaia M, Hinsinger DD, Frémont P, Vanni C et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2022; 2:100123 [View Article]
    [Google Scholar]
  76. Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 2014; 12:e1001889 [View Article] [PubMed]
    [Google Scholar]
  77. Manni M, Berkeley MR, Seppey M, Zdobnov EM. BUSCO: assessing genomic data quality and beyond. Current Protocols 2021; 1: [View Article]
    [Google Scholar]
  78. Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 1999; 46:347–366 [View Article] [PubMed]
    [Google Scholar]
  79. Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New phylogenomic analysis of the enigmatic phylum telonemia further resolves the eukaryote tree of life. Mol Biol Evol 2019; 36:757–765 [View Article] [PubMed]
    [Google Scholar]
  80. Helliwell KE. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. New Phytologist 2017; 216:62–68 [View Article]
    [Google Scholar]
  81. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG. Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 2011; 28:2921–2933 [View Article] [PubMed]
    [Google Scholar]
  82. Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife 2015; 4: [View Article]
    [Google Scholar]
  83. Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 2009; 10:258 [View Article] [PubMed]
    [Google Scholar]
  84. Allen AE, Dupont CL, Oborník M, Horák A, Nunes-Nesi A et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 2011; 473:203–207 [View Article]
    [Google Scholar]
  85. Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG. Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep 2007; 24:988 [View Article]
    [Google Scholar]
  86. Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S et al. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 2021; 12:6651 Epub ahead of print 1 December 2021 [View Article] [PubMed]
    [Google Scholar]
  87. Li C, Crack JC, Newton‐Payne S, Murphy ARJ, Chen X et al. Mechanistic insights into the key marine dimethylsulfoniopropionate synthesis enzyme DSYB/DSYB. mLife 2022; 1:114–130 [View Article]
    [Google Scholar]
  88. Shao X, Cao H-Y, Zhao F, Peng M, Wang P et al. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol Microbiol 2019; 111:1057–1073 [View Article] [PubMed]
    [Google Scholar]
  89. Campbell K, Herrera-Dominguez L, Correia-Melo C, Zelezniak A, Ralser M. Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Curr Opin Syst Biol 2018; 8:97–108 [View Article]
    [Google Scholar]
  90. Durham BP. Deciphering metabolic currencies that support marine microbial networks. mSystems 2021; 6:763–784 [View Article]
    [Google Scholar]
  91. Kronmiller BA, Feau N, Shen D, Tabima JF, Ali SS et al. comparative genomic analysis of 31 Phytophthora genomes reveals genome plasticity and horizontal gene transfer. Mol Plant Microbe Interact 2023; 36:26–46 [View Article] [PubMed]
    [Google Scholar]
  92. Wilken S, Yung CCM, Poirier C, Massana R, Jimenez V et al. Choanoflagellates alongside diverse uncultured predatory protists consume the abundant open-ocean cyanobacterium Prochlorococcus. Proc Natl Acad Sci U S A 2023; 120:e2302388120 [View Article] [PubMed]
    [Google Scholar]
  93. Kageyama H, Tanaka Y, Shibata A, Waditee-Sirisattha R, Takabe T. Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: Identification of a gene encoding MTHB-methyltransferase. Arch Biochem Biophys 2018; 645:100–106 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001510
Loading
Metagenomics of the MAST-3 stramenopile, Incisomonas, and its associated microbiome reveals unexpected metabolic attributes and extensive nutrient dependencies
M Gen 11, 001510 (2025); https://doi.org/10.1099/mgen.0.001510
/content/journal/mgen/10.1099/mgen.0.001510
/content/journal/mgen/10.1099/mgen.0.001510
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most read this month

Article
content/journal/mgen
Journal
5
3
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error
Microbiology Society:
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001510
10.1099/mgen.0.001510
SEARCH_EXPAND_ITEM

AltStyle によって変換されたページ (->オリジナル) /