Skip to content [フレーム]
1887

Abstract

Understanding the basis of fungal pathogenesis requires knowledge of pathogen biology that is built through studies of gene function and regulation. The critical first step in nearly all these studies is genetic transformation: the generation of targeted DNA sequence modifications through the introduction of exogenous DNA into the cell. For research focused on gene regulation, or where small precise mutations are desired, the maintenance of genomic context (i.e. surrounding DNA sequences) is important, as the disruption of flanking DNA elements can alter gene expression and confound results. This often makes the inclusion of selectable markers that are physically linked to the sequence of interest unsuitable and complicates the transformation process. Here, we present a co-transformation strategy in the human pathogen Aspergillus fumigatus that can be used to make precise, marker-free gene edits at a locus of interest without disturbing flanking DNA sequences. By simultaneously introducing a marker-free, modified copy of the gene of interest and a plasmid that directs the integration of a selectable marker to a different locus, this approach takes advantage of the benefits of selection, with results similar to that of a truly markerless strategy.

  • Received:
  • Accepted:
  • Published Online:
Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/V017004/1)
    • Principal Award Recipient: ElaineBignell
  • Medical Research Council (Award MR/V033417/1)
    • Principal Award Recipient: ElaineBignell
  • Medical Research Council (Award MR/N006364/2)
    • Principal Award Recipient: ElaineBignell
© 2025 The Authors
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.001057.v3
2025年10月13日
2025年10月22日
Download as PowerPoint
Loading full text...

Full text loading...

/deliver/fulltext/acmi/7/10/acmi001057.v3.html?itemId=/content/journal/acmi/10.1099/acmi.0.001057.v3&mimeType=html&fmt=ahah

References

  1. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 2017; 3:57 [View Article] [PubMed]
    [Google Scholar]
  2. WHO WHO fungal priority pathogens list to guide research, development and public health action. Geneva: World Health Organisation; 2022
  3. Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis 2024 [View Article]
    [Google Scholar]
  4. Cadena J, Thompson GR, Patterson TF. Aspergillosis: epidemiology, diagnosis, and treatment. Infect Dis Clin North Am 2021; 35:415–434 [View Article] [PubMed]
    [Google Scholar]
  5. Kubodera T, Yamashita N, Nishimura A. Transformation of Aspergillus sp. and Trichoderma reesei using the pyrithiamine resistance gene (ptrA) of Aspergillus oryzae. Biosci Biotechnol Biochem 2002; 66:404–406 [View Article] [PubMed]
    [Google Scholar]
  6. Kubodera T, Yamashita N, Nishimura A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem 2000; 64:1416–1421 [View Article] [PubMed]
    [Google Scholar]
  7. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 1987; 56:117–124 [View Article] [PubMed]
    [Google Scholar]
  8. van Rhijn N, Furukawa T, Zhao C, McCann BL, Bignell E et al. Development of a marker-free mutagenesis system using CRISPR-Cas9 in the pathogenic mould Aspergillus fumigatus. Fungal Genet Biol 2020; 145:103479 [View Article] [PubMed]
    [Google Scholar]
  9. Hicks JB, Hinnen A, Fink GR. Properties of yeast transformation. Cold Spring Harb Symp Quant Biol 1979; 43 Pt 2:1305–1313 [View Article] [PubMed]
    [Google Scholar]
  10. Wernars K, Goosen T, Wennekes BM, Swart K, van den Hondel CA et al. Cotransformation of Aspergillus nidulans: a tool for replacing fungal genes. Mol Gen Genet 1987; 209:71–77 [View Article] [PubMed]
    [Google Scholar]
  11. Szewczyk E, Krappmann S. Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation. Eukaryot Cell 2010; 9:774–783 [View Article] [PubMed]
    [Google Scholar]
  12. Furukawa T, van Rhijn N, Fraczek M, Gsaller F, Davies E et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat Commun 2020; 11:427 [View Article] [PubMed]
    [Google Scholar]
  13. Rahman S, van Rhijn N, Papastamoulis P, Thomson DD, Carter Z et al. Distinct cohorts of Aspergillus fumigatus transcription factors are required for epithelial damage occurring via contact- or soluble effector-mediated mechanisms. Front Cell Infect Microbiol 2022; 12:907519 [View Article] [PubMed]
    [Google Scholar]
  14. Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y et al. Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 2006; 1:3111–3120 [View Article] [PubMed]
    [Google Scholar]
  15. Ballance DJ, Buxton FP, Turner G. Transformation of Aspergillus nidulans by the orotidine-5’-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun 1983; 112:284–289 [View Article] [PubMed]
    [Google Scholar]
  16. Cove DJ. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 1966; 113:51–56 [View Article] [PubMed]
    [Google Scholar]
  17. Sambrook J, Russell R. Molecular Cloning: A Laboratory Manual, 3rd Edn Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory; 2001
    [Google Scholar]
  18. Beattie SR, Mark KMK, Thammahong A, Ries LNA, Dhingra S et al. Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLoS Pathog 2017; 13:e1006340 [View Article]
    [Google Scholar]
  19. da Silva Ferreira ME, Kress MRVZ, Savoldi M, Goldman MHS, Härtl A et al. The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 2006; 5:207–211 [View Article] [PubMed]
    [Google Scholar]
  20. Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R et al. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 2013; 68:1486–1496 [View Article] [PubMed]
    [Google Scholar]
  21. Nødvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal Genet Biol 2018; 115:78–89 [View Article] [PubMed]
    [Google Scholar]
  22. Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 1988; 336:348–352 [View Article] [PubMed]
    [Google Scholar]
  23. Takahashi T, Hatamoto O, Koyama Y, Abe K. Efficient gene disruption in the koji-mold Aspergillus sojae using a novel variation of the positive-negative method. Mol Genet Genomics 2004; 272:344–352 [View Article] [PubMed]
    [Google Scholar]
  24. Hsueh YP, Idnurm A, Heitman J. Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet 2006; 2:e184 [View Article] [PubMed]
    [Google Scholar]
  25. Yu J-H, Hamari Z, Han K-H, Seo J-A, Reyes-Domínguez Y et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 2004; 41:973–981 [View Article] [PubMed]
    [Google Scholar]
  26. Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 2004; 101:12248–12253 [View Article] [PubMed]
    [Google Scholar]
  27. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L et al. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 2006; 172:1557–1566 [View Article] [PubMed]
    [Google Scholar]
  28. Krappmann S, Sasse C, Braus GH. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 2006; 5:212–215 [View Article] [PubMed]
    [Google Scholar]
  29. Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H. Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 2006; 103:14871–14876 [View Article] [PubMed]
    [Google Scholar]
  30. Takahashi T, Masuda T, Koyama Y. Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 2006; 275:460–470 [View Article] [PubMed]
    [Google Scholar]
  31. Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H et al. A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 2008; 45:878–889 [View Article] [PubMed]
    [Google Scholar]
  32. Bugeja HE, Boyce KJ, Weerasinghe H, Beard S, Jeziorowski A et al. Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei. Fungal Genet Biol 2012; 49:772–778 [View Article] [PubMed]
    [Google Scholar]
  33. Bertuzzi M, van Rhijn N, Krappmann S, Bowyer P, Bromley MJ et al. On the lineage of Aspergillus fumigatus isolates in common laboratory use. Med Mycol 2021; 59:7–13 [View Article] [PubMed]
    [Google Scholar]
  34. Grosse V, Krappmann S. The asexual pathogen aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. Eukaryot Cell 2008; 7:1724–1732 [View Article] [PubMed]
    [Google Scholar]
  35. Beck J, Ebel F. Characterization of the major Woronin body protein HexA of the human pathogenic mold Aspergillus fumigatus. Int J Med Microbiol 2013; 303:90–97 [View Article] [PubMed]
    [Google Scholar]
  36. Valsecchi I, Sarikaya-Bayram Ö, Wong Sak Hoi J, Muszkieta L, Gibbons J et al. MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen Aspergillus fumigatus. Mol Microbiol 2017; 105:880–900 [View Article] [PubMed]
    [Google Scholar]
  37. Schruefer S, Spadinger A, Kleinemeier C, Schmid L, Ebel F. Ypd1 is an essential protein of the major fungal pathogen Aspergillus fumigatus and a key element in the phosphorelay that is targeted by the antifungal drug fludioxonil. Front Fungal Biol 2021; 2:756990 [View Article] [PubMed]
    [Google Scholar]
  38. Vincek A, Wolf A, Thomas A, Ebel F, Schruefer S. The N-terminus of the Aspergillus fumigatus group III hybrid histidine kinase TcsC is essential for its physiological activity and targets the protein to the nucleus. mBio 2024; 15:e0118424 [View Article] [PubMed]
    [Google Scholar]
  39. Baldin C, Kühbacher A, Merschak P, Sastré-Velásquez LE, Abt B et al. Inducible selectable marker genes to improve Aspergillus fumigatus genetic manipulation. J Fungi 2021; 7:506 [View Article] [PubMed]
    [Google Scholar]
/content/journal/acmi/10.1099/acmi.0.001057.v3
Loading
Co-transformation of Aspergillus fumigatus: a simple and efficient strategy for gene editing without linking selectable markers
Access Microbiology 7, 001057.v3 (2025); https://doi.org/10.1099/acmi.0.001057.v3
/content/journal/acmi/10.1099/acmi.0.001057.v3
/content/journal/acmi/10.1099/acmi.0.001057.v3
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most read this month

Article
content/journal/acmi
Journal
5
3
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error
Microbiology Society:
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.001057.v3
10.1099/acmi.0.001057.v3
SEARCH_EXPAND_ITEM

AltStyle によって変換されたページ (->オリジナル) /