#: Antibase 2 - Antibase
>>
<<
Usr
Pri
JfC
LJ
Phr
Dic
Voc
!:
Help
Dictionary
Antibase Two
#: _ 1 0
Antibase
#: y is the binary representation of
y ,
and is equivalent to
(m#2)#:y ,where
m
is the maximum of the number of digits needed to represent the atoms
of
y in base
2 .For example:
i. 8
0 1 2 3 4 5 6 7
#: i. 8
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
In simple cases
r&#: is inverse to
r&#. .
Thus:
r=: 24 60 60
r #: r #. 2 3 4
2 3 4
But if
r #. y exceeds
(*/r)-1 (the largest
integer representable in the radix
r),
then the result of
r#:y is reduced modulo
*/r .
For example:
r #: r #. 29 3 4
5 3 4
A representation in an arbitrary base that is analogous
to the base-2 representation provided by the monadic use
of
#: may be provided as illustrated below:
ndr=: 1 + <.@^. Number of digits required
10 ndr y=: 9 10 11 100 99 100
1 2 2 3 2 3
(y#:~10 #~ >./10 ndr y);(y#:~8 #~ >./8 ndr y)
+-----+-----+
|0 0 9|0 1 1|
|0 1 0|0 1 2|
|0 1 1|0 1 3|
|1 0 0|1 4 4|
|0 9 9|1 4 3|
|1 0 0|1 4 4|
+-----+-----+
(10&#.^:_1 ; 8&#.^:_1) y
+-----+-----+
|0 0 9|0 1 1|
|0 1 0|0 1 2|
|0 1 1|0 1 3|
|1 0 0|1 4 4|
|0 9 9|1 4 3|
|1 0 0|1 4 4|
+-----+-----+
>>
<<
Usr
Pri
JfC
LJ
Phr
Dic
Voc
!:
Help
Dictionary