Next Page
Previous Page
Home
Tools & Aids
Search Handbook
1.
Exploratory Data Analysis
This chapter presents the assumptions, principles, and techniques necessary to gain insight into data via EDA--exploratory data analysis.
1.
EDA Introduction
What is EDA?
EDA vs Classical & Bayesian
EDA vs Summary
EDA Goals
The Role of Graphics
An EDA/Graphics Example
General Problem Categories
2.
EDA Assumptions
Underlying Assumptions
Importance
Techniques for Testing Assumptions
Interpretation of 4-Plot
Consequences
3.
EDA Techniques
Introduction
Analysis Questions
Graphical Techniques: Alphabetical
Graphical Techniques: By Problem Category
Quantitative Techniques
Probability Distributions
4.
EDA Case Studies
Introduction
By Problem Category
Detailed Chapter Table of Contents
References
Dataplot Commands for EDA Techniques
http://www.nist.gov
https://www.itl.nist.gov/div898/handbook
Home
Tools & Aids
Search Handbook
Previous Page
Next Page
AltStyle
によって変換されたページ
(->オリジナル)
/
アドレス:
モード:
デフォルト
音声ブラウザ
ルビ付き
配色反転
文字拡大
モバイル