php - Metamath Proof Explorer

MPE Home Metamath Proof Explorer < Previous Next >
Nearby theorems
Mirrors > Home > MPE Home > Th. List > php Structured version Visualization version Unicode version

Theorem php 9219
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9216, phplem2 9217, nneneq 9218, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5335. (Revised by BTernaryTau, 18-Nov-2024.)
Assertion
Ref Expression
php

Proof of Theorem php
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
10ss 4375 . . . . . 6
2sspsstr 4083 . . . . . 6
31, 2mpan 690 . . . . 5
40pss 4422 . . . . . 6
5df-ne 2933 . . . . . 6
64, 5bitri 275 . . . . 5
73, 6sylib 218 . . . 4
8nn0suc 7888 . . . . 5
98orcanai 1004 . . . 4
107, 9sylan2 593 . . 3
11pssnel 4446 . . . . . . . 8
12pssss 4073 . . . . . . . . . . . . . . . . . . 19
13ssdif 4119 . . . . . . . . . . . . . . . . . . . 20
14disjsn 4687 . . . . . . . . . . . . . . . . . . . . . 22
15disj3 4429 . . . . . . . . . . . . . . . . . . . . . 22
1614, 15bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21
17sseq1 3984 . . . . . . . . . . . . . . . . . . . . 21
1816, 17sylbi 217 . . . . . . . . . . . . . . . . . . . 20
1913, 18imbitrrid 246 . . . . . . . . . . . . . . . . . . 19
2012, 19syl5 34 . . . . . . . . . . . . . . . . . 18
21peano2 7884 . . . . . . . . . . . . . . . . . . 19
22nnfi 9179 . . . . . . . . . . . . . . . . . . 19
23diffi 9187 . . . . . . . . . . . . . . . . . . 19
24ssdomfi 9208 . . . . . . . . . . . . . . . . . . 19
2521, 22, 23, 244syl 19 . . . . . . . . . . . . . . . . . 18
2620, 25sylan9 507 . . . . . . . . . . . . . . . . 17
27263impia 1117 . . . . . . . . . . . . . . . 16
28273com23 1126 . . . . . . . . . . . . . . 15
29283expa 1118 . . . . . . . . . . . . . 14
3029adantrr 717 . . . . . . . . . . . . 13
31nnfi 9179 . . . . . . . . . . . . . . 15
3231ad2antrl 728 . . . . . . . . . . . . . 14
33simpl 482 . . . . . . . . . . . . . 14
34simpr 484 . . . . . . . . . . . . . 14
35phplem1 9216 . . . . . . . . . . . . . . . . 17
36ensymfib 9196 . . . . . . . . . . . . . . . . . . 19
3731, 36syl 17 . . . . . . . . . . . . . . . . . 18
3837adantr 480 . . . . . . . . . . . . . . . . 17
3935, 38mpbid 232 . . . . . . . . . . . . . . . 16
40endom 8991 . . . . . . . . . . . . . . . 16
4139, 40syl 17 . . . . . . . . . . . . . . 15
42domtrfir 9206 . . . . . . . . . . . . . . 15
4341, 42syl3an3 1165 . . . . . . . . . . . . . 14
4432, 33, 34, 43syl3anc 1373 . . . . . . . . . . . . 13
4530, 44sylancom 588 . . . . . . . . . . . 12
4645exp43 436 . . . . . . . . . . 11
4746com4r 94 . . . . . . . . . 10
4847imp 406 . . . . . . . . 9
4948exlimiv 1930 . . . . . . . 8
5011, 49mpcom 38 . . . . . . 7
51simp1 1136 . . . . . . . . . . . . 13
52endom 8991 . . . . . . . . . . . . . . 15
53domtrfir 9206 . . . . . . . . . . . . . . 15
5452, 53syl3an2 1164 . . . . . . . . . . . . . 14
5531, 54syl3an1 1163 . . . . . . . . . . . . 13
56sssucid 6433 . . . . . . . . . . . . . . . . 17
57ssdomfi 9208 . . . . . . . . . . . . . . . . 17
5822, 56, 57mpisyl 21 . . . . . . . . . . . . . . . 16
5921, 58syl 17 . . . . . . . . . . . . . . 15
6059adantr 480 . . . . . . . . . . . . . 14
61sbthfi 9211 . . . . . . . . . . . . . . 15
6231, 61syl3an1 1163 . . . . . . . . . . . . . 14
6360, 62mpd3an3 1464 . . . . . . . . . . . . 13
6451, 55, 63syl2anc 584 . . . . . . . . . . . 12
65643com23 1126 . . . . . . . . . . 11
66653expia 1121 . . . . . . . . . 10
67peano2b 7876 . . . . . . . . . . . . 13
68nnord 7867 . . . . . . . . . . . . 13
6967, 68sylbi 217 . . . . . . . . . . . 12
70vex 3463 . . . . . . . . . . . . 13
7170sucid 6435 . . . . . . . . . . . 12
72nordeq 6371 . . . . . . . . . . . 12
7369, 71, 72sylancl 586 . . . . . . . . . . 11
74nneneq 9218 . . . . . . . . . . . . . 14
7567, 74sylanb 581 . . . . . . . . . . . . 13
7675anidms 566 . . . . . . . . . . . 12
7776necon3bbid 2969 . . . . . . . . . . 11
7873, 77mpbird 257 . . . . . . . . . 10
7966, 78nsyli 157 . . . . . . . . 9
8079expcom 413 . . . . . . . 8
8180pm2.43d 53 . . . . . . 7
8250, 81syli 39 . . . . . 6
8382com12 32 . . . . 5
84psseq2 4066 . . . . . 6
85breq1 5122 . . . . . . 7
8685notbid 318 . . . . . 6
8784, 86imbi12d 344 . . . . 5
8883, 87syl5ibrcom 247 . . . 4
8988rexlimiv 3134 . . 3
9010, 89syl 17 . 2
9190syldbl2 841 1
Colors of variables: wff setvar class
Syntax hints: wn 3 wi 4 wb 206 wa 395 w3a 1086 wceq 1540 wex 1779 wcel 2108 wne 2932 wrex 3060 cdif 3923 cin 3925 wss 3926 wpss 3927 c0 4308 csn 4601 class class class wbr 5119 word 6351 csuc 6354 com 7859 cen 8954 cdom 8955 cfn 8957
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-om 7860 df-1o 8478 df-en 8958 df-dom 8959 df-fin 8961
This theorem is referenced by: php2 9220 php2OLD 9230 php3OLD 9231 omssrncard 43511 rr-phpd 44180
Copyright terms: Public domain W3C validator

AltStyle によって変換されたページ (->オリジナル) /