/* nag_lapackeig_dsygvd (f08scc) Example Program. * * Copyright 2025 Numerical Algorithms Group. * * Mark 31.1, 2025. */ #include<math.h> #include<nag.h> #include<stdio.h> intmain(void){ /* Scalars */ doubleanorm,bnorm,eps,rcond,rcondb,t1,t2,t3; Integeri,j,n,pda,pdb; Integerexit_status=0; /* Arrays */ double*a=0,*b=0,*eerbnd=0,*rcondz=0,*w=0,*zerbnd=0; charnag_enum_arg[40]; /* Nag Types */ NagErrorfail; Nag_OrderTypeorder; Nag_UploTypeuplo; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J - 1) * pda + I - 1] #define B(I, J) b[(J - 1) * pdb + I - 1] order=Nag_ColMajor; #else #define A(I, J) a[(I - 1) * pda + J - 1] #define B(I, J) b[(I - 1) * pdb + J - 1] order=Nag_RowMajor; #endif INIT_FAIL(fail); printf("nag_lapackeig_dsygvd (f08scc) Example Program Results\n\n"); /* Skip heading in data file */ scanf("%*[^\n]"); scanf("%"NAG_IFMT"%*[^\n]",&n); if(n<0){ printf("Invalid n\n"); exit_status=1; gotoEND; ; } scanf(" %39s%*[^\n]",nag_enum_arg); /* nag_enum_name_to_value (x04nac). * Converts NAG enum member name to value */ uplo=(Nag_UploType)nag_enum_name_to_value(nag_enum_arg); pda=n; pdb=n; /* Allocate memory */ if(!(a=NAG_ALLOC(n*n,double))||!(b=NAG_ALLOC(n*n,double))|| !(eerbnd=NAG_ALLOC(n,double))||!(rcondz=NAG_ALLOC(n,double))|| !(w=NAG_ALLOC(n,double))||!(zerbnd=NAG_ALLOC(n,double))){ printf("Allocation failure\n"); exit_status=-1; gotoEND; } /* Read the triangular parts of the matrices A and B */ if(uplo==Nag_Upper){ for(i=1;i<=n;++i) for(j=i;j<=n;++j) scanf("%lf",&A(i,j)); scanf("%*[^\n]"); for(i=1;i<=n;++i) for(j=i;j<=n;++j) scanf("%lf",&B(i,j)); }else{ for(i=1;i<=n;++i) for(j=1;j<=i;++j) scanf("%lf",&A(i,j)); scanf("%*[^\n] "); for(i=1;i<=n;++i) for(j=1;j<=i;++j) scanf("%lf",&B(i,j)); } scanf("%*[^\n] "); /* Compute the one-norms of the symmetric matrices A and B using * nag_blast_dsy_norm (f16rcc). */ nag_blast_dsy_norm(order,Nag_OneNorm,uplo,n,a,pda,&anorm,&fail); nag_blast_dsy_norm(order,Nag_OneNorm,uplo,n,b,pdb,&bnorm,&fail); if(fail.code!=NE_NOERROR){ printf("Error from nag_blast_dsy_norm (f16rcc).\n%s\n",fail.message); exit_status=1; gotoEND; } /* Solve the generalized symmetric eigenvalue problem A*B*x = lambda*x * using nag_lapackeig_dsygvd (f08scc). */ nag_lapackeig_dsygvd(order,2,Nag_DoBoth,uplo,n,a,pda,b,pdb,w,&fail); if(fail.code!=NE_NOERROR){ printf("Error from nag_lapackeig_dsygvd (f08scc).\n%s\n",fail.message); exit_status=1; gotoEND; } /* Normalize the eigenvectors */ for(j=1;j<=n;j++) for(i=n;i>=1;i--) A(i,j)=A(i,j)/A(1,j); /* Print eigensolution */ printf(" Eigenvalues\n "); for(j=0;j<n;++j) printf(" %10.4f%s",w[j],j%6==5?"\n":""); printf("\n\n"); fflush(stdout); nag_file_print_matrix_real_gen(order,Nag_GeneralMatrix,Nag_NonUnitDiag,n, n,a,pda,"Eigenvectors",0,&fail); if(fail.code!=NE_NOERROR){ printf("Error from nag_file_print_matrix_real_gen (x04cac).\n%s\n", fail.message); exit_status=1; gotoEND; } /* Estimate the reciprocal condition number of the Cholesky factor of B. * nag_lapacklin_dtrcon (f07tgc) * Note that: cond(B) = 1.0/(rcond*rcond). */ nag_lapacklin_dtrcon(order,Nag_OneNorm,uplo,Nag_NonUnitDiag,n,b,pdb, &rcond,&fail); if(fail.code!=NE_NOERROR){ printf("Error from nag_lapacklin_dtrcon (f07tgc).\n%s\n",fail.message); exit_status=1; gotoEND; } /* Print the reciprocal condition number of B */ rcondb=rcond*rcond; printf("\nEstimate of reciprocal condition number for B\n %11.1e\n", rcondb); /* Get the machine precision, using nag_machine_precision (x02ajc) */ eps=nag_machine_precision; if(rcond<eps){ printf("\nB is very ill-conditioned, error estimates have not been" " computed\n"); gotoEND; } /* Estimate reciprocal condition numbers for the eigenvectors of A - lambda*B * nag_lapackeig_ddisna (f08flc) */ nag_lapackeig_ddisna(Nag_EigVecs,n,n,w,rcondz,&fail); if(fail.code!=NE_NOERROR){ printf("Error from nag_lapackeig_ddisna (f08flc).\n%s\n",fail.message); exit_status=1; gotoEND; } /* Compute the error estimates for the eigenvalues and eigenvectors. */ t1=1.0/rcond; t2=eps*t1; t3=anorm*bnorm; for(i=0;i<n;++i){ eerbnd[i]=eps*(t3+fabs(w[i])/rcondb); zerbnd[i]=t2*(t3/rcondz[i]+t1); } /* Print the approximate error bounds for the eigenvalues and vectors. */ printf("\nError estimates for the eigenvalues\n "); for(i=0;i<n;++i) printf(" %10.1e%s",eerbnd[i],i%6==5?"\n":""); printf("\n\nError estimates for the eigenvectors\n "); for(i=0;i<n;++i) printf(" %10.1e%s",zerbnd[i],i%6==5?"\n":""); printf("\n"); END: NAG_FREE(a); NAG_FREE(b); NAG_FREE(eerbnd); NAG_FREE(rcondz); NAG_FREE(w); NAG_FREE(zerbnd); returnexit_status; }