/* nag_lapackeig_dsyevx (f08fbc) Example Program. * * Copyright 2025 Numerical Algorithms Group. * * Mark 31.1, 2025. */ #include<nag.h> #include<stdio.h> intmain(void){ /* Scalars */ doubleabstol,vl,vu; Integeri,il=0,iu=0,j,m,n,pda,pdz; Integerexit_status=0; /* Arrays */ charnag_enum_arg[40]; double*a=0,*w=0,*z=0; Integer*index=0; /* Nag Types */ Nag_OrderTypeorder; Nag_RangeTyperange; Nag_UploTypeuplo; Nag_JobTypejob; NagErrorfail,fail_print; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J - 1) * pda + I - 1] #define Z(I, J) z[(J - 1) * pdz + I - 1] order=Nag_ColMajor; #else #define A(I, J) a[(I - 1) * pda + J - 1] #define Z(I, J) z[(I - 1) * pdz + J - 1] order=Nag_RowMajor; #endif INIT_FAIL(fail); printf("nag_lapackeig_dsyevx (f08fbc) Example Program Results\n\n"); /* Skip heading in data file */ scanf("%*[^\n]"); scanf("%"NAG_IFMT"%*[^\n]",&n); /* Read uplo, range and job */ scanf("%39s%*[^\n]",nag_enum_arg); /* nag_enum_name_to_value (x04nac). * Converts NAG enum member name to value. */ uplo=(Nag_UploType)nag_enum_name_to_value(nag_enum_arg); scanf("%39s%*[^\n]",nag_enum_arg); range=(Nag_RangeType)nag_enum_name_to_value(nag_enum_arg); scanf("%39s%*[^\n]",nag_enum_arg); job=(Nag_JobType)nag_enum_name_to_value(nag_enum_arg); /* Allocate memory */ if(!(a=NAG_ALLOC(n*n,double))||!(w=NAG_ALLOC(n,double))|| !(z=NAG_ALLOC(n*n,double))||!(index=NAG_ALLOC(n,Integer))){ printf("Allocation failure\n"); exit_status=-1; gotoEND; } pda=n; pdz=n; /* Read the lower and upper bounds of the interval to be searched, * and read the upper triangular part of the matrix A from data file */ scanf("%lf%lf%*[^\n]",&vl,&vu); for(i=1;i<=n;++i) for(j=i;j<=n;++j) scanf("%lf",&A(i,j)); scanf("%*[^\n]"); /* Set the absolute error tolerance for eigenvalues. With abstol * set to zero, the default value is used instead. */ abstol=0.0; /* nag_lapackeig_dsyevx (f08fbc). * Solve the symmetric eigenvalue problem. */ nag_lapackeig_dsyevx(order,job,range,uplo,n,a,pda,vl,vu,il,iu, abstol,&m,w,z,pdz,index,&fail); if(fail.code!=NE_NOERROR&&fail.code!=NE_CONVERGENCE){ printf("Error from nag_lapackeig_dsyevx (f08fbc).\n%s\n",fail.message); exit_status=1; gotoEND; } /* Normalize the eigenvectors */ for(j=1;j<=m;j++) for(i=n;i>=1;i--) Z(i,j)=Z(i,j)/Z(1,j); /* Print solution */ printf("Number of eigenvalues found =%5"NAG_IFMT"\n",m); printf("\nEigenvalues\n"); for(j=0;j<m;++j) printf("%8.4f%s",w[j],(j+1)%8==0?"\n":" "); printf("\n\n"); /* nag_file_print_matrix_real_gen (x04cac). * Print selected eigenvectors. */ INIT_FAIL(fail_print); fflush(stdout); nag_file_print_matrix_real_gen(order,Nag_GeneralMatrix,Nag_NonUnitDiag,n, m,z,pdz,"Selected eigenvectors",0, &fail_print); if(fail_print.code!=NE_NOERROR){ printf("Error from nag_file_print_matrix_real_gen (x04cac).\n%s\n", fail_print.message); exit_status=1; gotoEND; } if(fail.code==NE_CONVERGENCE){ printf("eigenvectors failed to converge\n"); printf("Indices of eigenvectors that did not converge\n"); for(j=0;j<m;++j) printf("%8"NAG_IFMT"%s",index[j],(j+1)%8==0?"\n":" "); } END: NAG_FREE(a); NAG_FREE(w); NAG_FREE(z); NAG_FREE(index); returnexit_status; } #undef A #undef Z