In dc: 9388 and 9693 (削除) 9493 94 96 102 105 129 138 141 (削除ここまで) chars
Just in case, I am using OpenBSD and some supposedly non-portable extensions at this point.
93 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[rdPr1-d0<p]sp1?dsMdd*sRd2%--
[dd*lRr-vddlMr-32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]
dsyx5klNlR/p
9688 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
[rdPr1-d0<p]sp[dd*lRr-vddlMr-32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]sy
1?dsMdd*sRd2%-1r-lyx5klNlRsY[0lM-[dd*lYd*+lRr(2*d5*32+PlN+sN1+dlM!<x]dsxxAPlY2+dsYlM>y]
dsyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p
In dc: 93 and 96 (削除) 94 96 102 105 129 138 141 (削除ここまで) chars
93 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[rdPr1-d0<p]sp1?dsMdd*sRd2%--
[dd*lRr-vddlMr-32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]
dsyx5klNlR/p
96 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
[rdPr1-d0<p]sp[dd*lRr-vddlMr-32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]sy
?dsMdd*sRd2%-1r-lyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p
In dc: 88 and 93 (削除) 93 94 96 102 105 129 138 141 (削除ここまで) chars
Just in case, I am using OpenBSD and some supposedly non-portable extensions at this point.
93 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[rdPr1-d0<p]sp1?dsMdd*sRd2%--
[dd*lRr-vddlMr-32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]
dsyx5klNlR/p
88 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
1?dsMdd*sRd2%--sY[0lM-[dd*lYd*+lRr(2*d5*32+PlN+sN1+dlM!<x]dsxxAPlY2+dsYlM>y]
dsyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p
In dc: 9493 and 9796 (削除) 9694 96 102 105 129 138 141 (削除ここまで) chars
9493 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[rdPr1-d0<p]sp1?dsMdd*sRd2%--
[dd*lRr-vddlMr-32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]
dsyx5klNlR/p
9996 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
[rdPr1-d0<p]sp[dd*lRr-vddlMr-32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]sy32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]sy
?dsMdd*sRd2%-1r-lyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p
In dc: 94 and 97 (削除) 96 102 105 129 138 141 (削除ここまで) chars
94 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[rdPr1-d0<p]sp1?dsMdd*sRd2%--
[dd*lRr-vddlMr-32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]
dsyx5klNlR/p
99 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
[rdPr1-d0<p]sp[dd*lRr-vddlMr-32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]sy
?dsMdd*sRd2%-1r-lyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p
In dc: 93 and 96 (削除) 94 96 102 105 129 138 141 (削除ここまで) chars
93 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[rdPr1-d0<p]sp1?dsMdd*sRd2%--
[dd*lRr-vddlMr-32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]
dsyx5klNlR/p
96 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
[rdPr1-d0<p]sp[dd*lRr-vddlMr-32rlpxRR42r2*lpxRRAP4*2+lN+sN2+dlM>y]sy
?dsMdd*sRd2%-1r-lyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p
In dc: 9694 and 97 (削除) 10296 102 105 129 138 141 (削除ここまで) chars
9694 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[2+]s21[rdPr1-d0<p]sp1?dsMdd*sRd2%--sY[0lM
[dd*lRr-[dd*lYd*+lRvddlMr-0r0>2d5*32+PlN+sN1+dlM!<x]32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]
dsxx10PlY2+dsYlM>y]dsyx5klNlRdsyx5klNlR/p
99 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
[rdPr1-d0<p]sp[dd*lRr-vddlMr-32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]sy
?dsMdd*sRd2%-1r-lyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p
In dc: 96 and 97 (削除) 102 105 129 138 141 (削除ここまで) chars
96 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[2+]s21?dsMdd*sRd2%--sY[0lM-[dd*lYd*+lR-0r0>2d5*32+PlN+sN1+dlM!<x]
dsxx10PlY2+dsYlM>y]dsyx5klNlR/p
99 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
[rdPr1-d0<p]sp[dd*lRr-vddlMr-32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]sy
?dsMdd*sRd2%-1r-lyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p
In dc: 94 and 97 (削除) 96 102 105 129 138 141 (削除ここまで) chars
94 chars. This is based on same formula as FORTRAN solution (slightly different results than test cases). Calculates X^2=R^2-Y^2 for every Y
[rdPr1-d0<p]sp1?dsMdd*sRd2%--
[dd*lRr-vddlMr-32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]
dsyx5klNlR/p
99 chars. Iterative solution. Matches test cases. For every X and Y checks if X^2+Y^2<=R^2
[rdPr1-d0<p]sp[dd*lRr-vddlMr-32rlpxRR42r2*lpxRR10P4*2+lN+sN2+dlM>y]sy
?dsMdd*sRd2%-1r-lyx5klNlR/p
To run dc pi.dc.
Here is an older annotated version:
# Routines to print '*' or ' '. If '*', increase the counter by 2
[lN2+sN42P]s1
[32P]s2
# do 1 row
# keeping I in the stack
[
# X in the stack
# Calculate X^2+Y^2 (leave a copy of X)
dd*lYd*+
#Calculate X^2+Y^2-R^2...
lR-d
# .. if <0, execute routine 1 (print '*')
0>1
# .. else execute routine 2 (print ' ')
0!>2
# increment X..
1+
# and check if done with line (if not done, recurse)
d lM!<x
]sx
# Routine to cycle for the columns
# Y is on the stack
[
# push -X
0lM-
# Do row
lxx
# Print EOL
10P
# Increment Y and save it, leaving 2 copies
lY 2+ dsY
# Check for stop condition
lM >y
]sy
# main loop
# Push Input value
[Input:]n?
# Initialize registers
# M=rows
d sM
# Y=1-(M-(M%2))
dd2%-1r-sY
# R=M^2
d*sR
# N=0
0sN
[Output:]p
# Main routine
lyx
# Print value of PI, N/R
5klNlR/p