WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

TRSM[sd,ul,ts,dg,α,a,b]

solves triangular systems of linear equations opts[a].x=α b or x.opts[a]==α b and resets b to the results x.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Properties & Relations  
Possible Issues  
Related Guides
Cite this Page
LinearAlgebra`BLAS`
LinearAlgebra`BLAS`

TRSM

TRSM[sd,ul,ts,dg,α,a,b]

solves triangular systems of linear equations opts[a].x=α b or x.opts[a]==α b and resets b to the results x.

Details and Options

  • To use TRSM, you first need to load the BLAS Package using Needs ["LinearAlgebra`BLAS`"].
  • The following arguments must be given:
  • sd input string left/right side string
    ul
  • input string
  • upper/lower triangular string
ts input string transposition string
dg input string diagonal ones string
α input expression scalar mutliple
a input expression rectangular matrix
b input/output symbol rectangular matrix; the symbol value is modified in place
  • The left/right side string sd may be specified as:
  • "L" a is on the left side of the dot product
    "R" a is on the right side of the dot product
  • The upper/lower triangular string ul may be specified as:
  • "U" the upper triangular part of a is to be used
    "L" the lower triangular part of a is to be used
  • The transposition strings describe the operators opts and may be specified as:
  • "N" no transposition
    "T" transpose
    "C" conjugate transpose
  • The diagonal ones string dg may be specified as:
  • "U" the main diagonal of a is assumed to contain only ones
    "N" the actual values of the main diagonal of a are used
  • Dimensions of the matrix arguments must be such that the dot product is well defined.
  • Examples

    open all close all

    Basic Examples  (1)

    Load the BLAS package:

    Compute Inverse [UpperTriangularize [a]].b and save it in b:

    Scope  (4)

    Real matrices:

    Complex matrices:

    Arbitrary-precision matrices:

    Symbolic matrices:

    Properties & Relations  (4)

    For invertible matrices a, TRSM["L","U","N","N",α,a,b] is equivalent to b=α Inverse [UpperTriangularize [a]].b:

    For invertible matrices a, TRSM["L","L","T","N",α,a,b] is equivalent to b=α Inverse [Transpose [LowerTriangularize [a]]].b:

    Note this is not TRSM["L","U","T","N",α,a,L] as the lower triangular part is used for the transpose:

    If dg="U", the diagonal values of a are assumed to be ones:

    The diagonal in a has been effectively replaced by ones:

    If a is a rectangular matrix then only the leading upper or lower triangular part of a is used:

    The matrix a is effectively truncated to its upper left corner:

    Possible Issues  (2)

    The last argument must be a symbol:

    The last argument must be initialized to a matrix:

    Wolfram Research (2017), TRSM, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSM.html.

    Text

    Wolfram Research (2017), TRSM, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSM.html.

    CMS

    Wolfram Language. 2017. "TRSM." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSM.html.

    APA

    Wolfram Language. (2017). TRSM. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSM.html

    BibTeX

    @misc{reference.wolfram_2025_trsm, author="Wolfram Research", title="{TRSM}", year="2017", howpublished="\url{https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSM.html}", note=[Accessed: 17-November-2025]}

    BibLaTeX

    @online{reference.wolfram_2025_trsm, organization={Wolfram Research}, title={TRSM}, year={2017}, url={https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/TRSM.html}, note=[Accessed: 17-November-2025]}

    Top [フレーム]

    AltStyle によって変換されたページ (->オリジナル) /