WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

SYMV[ul,α,a,x,β,y]

computes the symmetric matrix-vector multiplication α a.x+β y and resets y to the result.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Properties & Relations  
Possible Issues  
Related Guides
Cite this Page
LinearAlgebra`BLAS`
LinearAlgebra`BLAS`

SYMV

SYMV[ul,α,a,x,β,y]

computes the symmetric matrix-vector multiplication α a.x+β y and resets y to the result.

Details and Options

  • To use SYMV, you first need to load the BLAS Package using Needs ["LinearAlgebra`BLAS`"].
  • The following arguments must be given:
  • ul input string upper/lower triangular string
    α input expression scalar mutliple
    a input expression square symmetric matrix
    x input expression vector
    β input expression scalar multiple
    y input/output symbol vector; the symbol value is modified in place
  • The matrix is assumed symmetric, and only the upper or lower triangular part of a is used.
  • The upper/lower triangular string ul may be specified as:
  • "U" the upper triangular part of a is to be used
    "L" the lower triangular part of a is to be used
  • Dimensions of the matrix and vector arguments must be such that the dot product and addition are well defined.

Examples

open all close all

Basic Examples  (1)

Load the BLAS package:

Compute a.x+2y and save it in y:

Scope  (4)

Real symmetric matrix and vectors:

Complex symmetric matrix and vectors:

Arbitrary-precision symmetric matrix and vectors:

Symbolic symmetric matrix and vectors:

Properties & Relations  (3)

SYMV["U",α,a,x,β,y] is equivalent to y=α a.x+β y if a is symmetric:

For a symmetric matrix, using the upper or lower triangular part generally produces the same result:

SYMV works with a non-symmetric matrices:

However, the upper and lower parts give different results:

The effective computation of yU is the following:

Possible Issues  (2)

The last argument must be a symbol:

The last argument must be initialized to a vector:

Wolfram Research (2017), SYMV, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/SYMV.html.

Text

Wolfram Research (2017), SYMV, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/SYMV.html.

CMS

Wolfram Language. 2017. "SYMV." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/SYMV.html.

APA

Wolfram Language. (2017). SYMV. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/SYMV.html

BibTeX

@misc{reference.wolfram_2025_symv, author="Wolfram Research", title="{SYMV}", year="2017", howpublished="\url{https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/SYMV.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_symv, organization={Wolfram Research}, title={SYMV}, year={2017}, url={https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/SYMV.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /