WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

GEMV[ts,α,a,x,β,y]

computes the matrix-vector multiplication α opts[a].x +β y and resets y to the result.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Properties & Relations  
Possible Issues  
Related Guides
Cite this Page
LinearAlgebra`BLAS`
LinearAlgebra`BLAS`

GEMV

GEMV[ts,α,a,x,β,y]

computes the matrix-vector multiplication α opts[a].x +β y and resets y to the result.

Details and Options

  • To use GEMV, you first need to load the BLAS Package using Needs ["LinearAlgebra`BLAS`"].
  • The following arguments must be given:
  • ts input string transposition string
    α input expression scalar mutliple
    a input expression rectangular matrix
    x input expression vector
    β input expression scalar multiple
    y input/output symbol vector; the symbol value is modified in place
  • The transposition string ts describes the operator opts and may be specified as:
  • "N" no transposition
    "T" transpose
    "C" conjugate transpose
  • Dimensions of the matrix and vector arguments must be such that the dot product and addition are well defined.

Examples

open all close all

Basic Examples  (1)

Load the BLAS package:

Compute a.x+2 y and save it in y:

Scope  (4)

Real matrix and vectors:

Complex matrix and vectors:

Arbitrary-precision matrix and vectors:

Symbolic matrix and vectors:

Properties & Relations  (3)

GEMV["N",α,a,x,β,y] is equivalent to y=α a.x+β y:

GEMV["T",α,a,x,β,y] is equivalent to y=α Transpose[a].x+β y:

GEMV["C",α,a,x,β,y] is equivalent to y=α ConjugateTranspose[a].x+β y:

Possible Issues  (2)

The last argument must be a symbol:

If the last argument is not a symbol initialized to a vector then an error message is issued:

Wolfram Research (2017), GEMV, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMV.html.

Text

Wolfram Research (2017), GEMV, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMV.html.

CMS

Wolfram Language. 2017. "GEMV." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMV.html.

APA

Wolfram Language. (2017). GEMV. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMV.html

BibTeX

@misc{reference.wolfram_2025_gemv, author="Wolfram Research", title="{GEMV}", year="2017", howpublished="\url{https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMV.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_gemv, organization={Wolfram Research}, title={GEMV}, year={2017}, url={https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMV.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /