ConvexHullMedian[{{x1,y1},…,{xn,yn}}]
estimates the median to be the mean of the bivariate data points lying on the innermost layer of the convex layers of the data.
ConvexHullMedian
ConvexHullMedian[{{x1,y1},…,{xn,yn}}]
estimates the median to be the mean of the bivariate data points lying on the innermost layer of the convex layers of the data.
Details and Options
- To use ConvexHullMedian, you first need to load the Computational Geometry Package using Needs ["ComputationalGeometry`"].
- ConvexHullMedian repeatedly removes the convex hull from the data until three or fewer data points remain.
- The option EstimateDOF->True may be used to include the number of points lying on the innermost convex layer. The default setting is False .
See Also
Text
Wolfram Research (2012), ConvexHullMedian, Wolfram Language function, https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html.
CMS
Wolfram Language. 2012. "ConvexHullMedian." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html.
APA
Wolfram Language. (2012). ConvexHullMedian. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html
BibTeX
@misc{reference.wolfram_2025_convexhullmedian, author="Wolfram Research", title="{ConvexHullMedian}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html}", note=[Accessed: 18-November-2025]}
BibLaTeX
@online{reference.wolfram_2025_convexhullmedian, organization={Wolfram Research}, title={ConvexHullMedian}, year={2012}, url={https://reference.wolfram.com/language/ComputationalGeometry/ref/ConvexHullMedian.html}, note=[Accessed: 18-November-2025]}