TOPICS
Search

Recurring Digital Invariant


To define a recurring digital invariant of order k, compute the sum of the kth powers of the digits of a number n. If this number n^' is equal to the original number n, then n=n^' is called a k-Narcissistic number. If not, compute the sums of the kth powers of the digits of n^', and so on. If this process eventually leads back to the original number n, the smallest number in the sequence {n,n^',n^(''),...} is said to be a k-recurring digital invariant. For example,

55:5^3+5^3 = 250
(1)
250:2^3+5^3+0^3 = 133
(2)
133:1^3+3^3+3^3 = 55,
(3)

so 55 is an order 3 recurring digital invariant. The following table gives recurring digital invariants of orders 2 to 10 (Madachy 1979).

order RDI cycle lengths
2 4 8
3 55, 136, 160, 919 3, 2, 3, 2
4 1138, 2178 7, 2
5 244, 8294, 8299, 9044, 9045, 10933, 28, 10, 6, 10, 22, 4, 12, 2, 2
24584, 58618, 89883
6 17148, 63804, 93531, 239459, 282595 30, 2, 4, 10, 3
7 80441, 86874, 253074, 376762, 92, 56, 27, 30, 14, 21
922428, 982108, five more
8 6822, 7973187, 8616804
9 322219, 2274831, 20700388, eleven more
10 20818070, five more

AltStyle によって変換されたページ (->オリジナル) /