Pentagonal Number Theorem
= (x)_infty
(3)
= 1-x-x^2+x^5+x^7-x^(12)-x^(15)+x^(22)+x^(26)-...
(4)
(OEIS A010815), where 0, 1, 2, 5, 7, 12, 15, 22, 26, ... (OEIS A001318) are generalized pentagonal numbers and (x)_infty is a q-Pochhammer symbol.
This identity was proved by Euler (1783) in a paper presented to the St. Petersburg Academy on August 14, 1775.
Related equalities are
See also
Partition Function P, Partition Function Q, Pentagonal Number, q-Pochhammer Symbol, Ramanujan Theta Functions, Zagier's IdentityExplore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 72, 1935.Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, pp. 221-222, 2007.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, p. 64, 1987.Euler, L. "Evolutio producti infiniti (1-x)(1-xx)(1-x^3)(1-x^4)(1-x^5) etc. in seriem simplicem." Acta Academiae Scientarum Imperialis Petropolitinae 1780, pp. 47-55, 1783. Opera Omnia, Series Prima, Vol. 3. pp. 472-479. Translated as Bell, J. "The Expansion of the Infinite Product (1-x)(1-xx)(1-x^3)(1-x^4)(1-x^5)(1-x^6) etc. into a Single Series." Dec. 4, 2004. http://www.arxiv.org/abs/math.HO/0411454/.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 83-85, 1999.Sloane, N. J. A. Sequences A001318/M1336 and A010815 in "The On-Line Encyclopedia of Integer Sequences."Referenced on Wolfram|Alpha
Pentagonal Number TheoremCite this as:
Weisstein, Eric W. "Pentagonal Number Theorem." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/PentagonalNumberTheorem.html