C^*-Algebra
A C^*-algebra is a Banach algebra with an antiautomorphic involution * which satisfies
(x^*)^* = x
(1)
x^*y^* = (yx)^*
(2)
x^*+y^* = (x+y)^*
(3)
(cx)^* = c^_x^*,
(4)
where c^_ is the complex conjugate of c, and whose norm satisfies
| ||xx^*||=||x||^2. |
(5)
|
See also
K-Theory, Pre-C-*-AlgebraExplore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Cuntz, J. and Echterhoff, S. (Eds.). C-* Algebras: Proceedings of the SFB-Workshop on C-* Algebras, Münster, Germany, March 8-12, 1999. Berlin: Springer-Verlag, 2000.Davidson, K. R. C-*-Algebras by Example. Providence, RI: Amer. Math. Soc., 1996.Wegge-Olsen, N. E. K-Theory and C-*-Algebras: A Friendly Approach. Oxford, England: Oxford University Press, 1993.Referenced on Wolfram|Alpha
C^*-AlgebraCite this as:
Weisstein, Eric W. "C^*-Algebra." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/C-Star-Algebra.html