1//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7//===----------------------------------------------------------------------===//
9// This file implements induction variable simplification. It does
10// not define any actual pass or policy, but provides a single function to
11// simplify a loop's induction variables based on ScalarEvolution.
13//===----------------------------------------------------------------------===//
34 #define DEBUG_TYPE "indvars"
36 STATISTIC(NumElimIdentity,
"Number of IV identities eliminated");
37 STATISTIC(NumElimOperand,
"Number of IV operands folded into a use");
38 STATISTIC(NumFoldedUser,
"Number of IV users folded into a constant");
39 STATISTIC(NumElimRem ,
"Number of IV remainder operations eliminated");
42 "Number of IV signed division operations converted to unsigned division");
45 "Number of IV signed remainder operations converted to unsigned remainder");
46 STATISTIC(NumElimCmp ,
"Number of IV comparisons eliminated");
49 /// This is a utility for simplifying induction variables
50 /// based on ScalarEvolution. It is the primary instrument of the
51 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
52 /// other loop passes that preserve SCEV.
53 class SimplifyIndvar {
63 bool RunUnswitching =
false;
70 : L(
Loop), LI(LI), SE(SE), DT(DT),
TTI(
TTI), Rewriter(Rewriter),
72 assert(LI &&
"IV simplification requires LoopInfo");
75 bool hasChanged()
const {
return Changed; }
76 bool runUnswitching()
const {
return RunUnswitching; }
78 /// Iteratively perform simplification on a worklist of users of the
79 /// specified induction variable. This is the top-level driver that applies
80 /// all simplifications to users of an IV.
81 void simplifyUsers(PHINode *CurrIV, IVVisitor *V =
nullptr);
83 void pushIVUsers(Instruction *Def,
84 SmallPtrSet<Instruction *, 16> &Simplified,
85 SmallVectorImpl<std::pair<Instruction *, Instruction *>>
88 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
90 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
91 bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
92 bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
94 bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
95 bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
96 bool eliminateTrunc(TruncInst *TI);
97 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
98 bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand);
99 void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand);
100 void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand,
102 void replaceRemWithNumerator(BinaryOperator *Rem);
103 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
104 void replaceSRemWithURem(BinaryOperator *Rem);
105 bool eliminateSDiv(BinaryOperator *SDiv);
106 bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand);
107 bool strengthenOverflowingOperation(BinaryOperator *OBO,
108 Instruction *IVOperand);
109 bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand);
113/// Find a point in code which dominates all given instructions. We can safely
114/// assume that, whatever fact we can prove at the found point, this fact is
115/// also true for each of the given instructions.
119 for (
auto *Insn : Instructions)
122 assert(CommonDom &&
"Common dominator not found?");
126/// Fold an IV operand into its use. This removes increments of an
127/// aligned IV when used by a instruction that ignores the low bits.
129/// IVOperand is guaranteed SCEVable, but UseInst may not be.
131/// Return the operand of IVOperand for this induction variable if IVOperand can
132/// be folded (in case more folding opportunities have been exposed).
133/// Otherwise return null.
135 Value *IVSrc =
nullptr;
136 const unsigned OperIdx = 0;
137 const SCEV *FoldedExpr =
nullptr;
138 bool MustDropExactFlag =
false;
142 case Instruction::UDiv:
143 case Instruction::LShr:
144 // We're only interested in the case where we know something about
145 // the numerator and have a constant denominator.
146 if (IVOperand != UseInst->
getOperand(OperIdx) ||
150 // Attempt to fold a binary operator with constant operand.
151 // e.g. ((I + 1) >> 2) => I >> 2
157 // IVSrc must be the (SCEVable) IV, since the other operand is const.
161 if (UseInst->
getOpcode() == Instruction::LShr) {
162 // Get a constant for the divisor. See createSCEV.
173 // We might have 'exact' flag set at this point which will no longer be
174 // correct after we make the replacement.
176 MustDropExactFlag =
true;
178 // We have something that might fold it's operand. Compare SCEVs.
182 // Bypass the operand if SCEV can prove it has no effect.
183 if (SE->
getSCEV(UseInst) != FoldedExpr)
186 LLVM_DEBUG(
dbgs() <<
"INDVARS: Eliminated IV operand: " << *IVOperand
187 <<
" -> " << *UseInst <<
'\n');
190 assert(SE->
getSCEV(UseInst) == FoldedExpr &&
"bad SCEV with folded oper");
192 if (MustDropExactFlag)
198 DeadInsts.emplace_back(IVOperand);
202bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
203 Instruction *IVOperand) {
207 unsigned IVOperIdx = 0;
216 // Get the SCEVs for the ICmp operands (in the specific context of the
224 ICmpInst::Predicate InvariantPredicate = LIP->Pred;
225 const SCEV *InvariantLHS = LIP->LHS;
226 const SCEV *InvariantRHS = LIP->RHS;
228 // Do not generate something ridiculous.
229 auto *PHTerm = Preheader->getTerminator();
230 if (
Rewriter.isHighCostExpansion({InvariantLHS, InvariantRHS}, L,
232 !
Rewriter.isSafeToExpandAt(InvariantLHS, PHTerm) ||
233 !
Rewriter.isSafeToExpandAt(InvariantRHS, PHTerm))
239 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified comparison: " << *ICmp <<
'\n');
243 RunUnswitching =
true;
247/// SimplifyIVUsers helper for eliminating useless
248/// comparisons against an induction variable.
249void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp,
250 Instruction *IVOperand) {
251 unsigned IVOperIdx = 0;
253 ICmpInst::Predicate OriginalPred = Pred;
261 // Get the SCEVs for the ICmp operands (in the specific context of the
267 // If the condition is always true or always false in the given context,
268 // replace it with a constant value.
269 SmallVector<Instruction *, 4>
Users;
270 for (
auto *U : ICmp->
users())
276 DeadInsts.emplace_back(ICmp);
277 LLVM_DEBUG(
dbgs() <<
"INDVARS: Eliminated comparison: " << *ICmp <<
'\n');
278 }
else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
279 // fallthrough to end of function
280 }
else if (ICmpInst::isSigned(OriginalPred) &&
282 // If we were unable to make anything above, all we can is to canonicalize
283 // the comparison hoping that it will open the doors for other
284 // optimizations. If we find out that we compare two non-negative values,
285 // we turn the instruction's predicate to its unsigned version. Note that
286 // we cannot rely on Pred here unless we check if we have swapped it.
288 LLVM_DEBUG(
dbgs() <<
"INDVARS: Turn to unsigned comparison: " << *ICmp
299bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
300 // Get the SCEVs for the ICmp operands.
304 // Simplify unnecessary loops away.
309 // Replace sdiv by udiv if both of the operands are non-negative
314 UDiv->setIsExact(SDiv->
isExact());
317 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified sdiv: " << *SDiv <<
'\n');
320 DeadInsts.push_back(SDiv);
327// i %s n -> i %u n if i >= 0 and n >= 0
328void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
334 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified srem: " << *Rem <<
'\n');
337 DeadInsts.emplace_back(Rem);
340// i % n --> i if i is in [0,n).
341void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
343 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified rem: " << *Rem <<
'\n');
346 DeadInsts.emplace_back(Rem);
349// (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
350void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
353 ICmpInst *ICmp =
new ICmpInst(Rem->
getIterator(), ICmpInst::ICMP_EQ,
N,
D);
359 LLVM_DEBUG(
dbgs() <<
"INDVARS: Simplified rem: " << *Rem <<
'\n');
362 DeadInsts.emplace_back(Rem);
365/// SimplifyIVUsers helper for eliminating useless remainder operations
366/// operating on an induction variable or replacing srem by urem.
367void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem,
368 Instruction *IVOperand,
372 // We're only interested in the case where we know something about
373 // the numerator, unless it is a srem, because we want to replace srem by urem
375 bool UsedAsNumerator = IVOperand == NValue;
376 if (!UsedAsNumerator && !IsSigned)
379 const SCEV *
N = SE->
getSCEV(NValue);
381 // Simplify unnecessary loops away.
387 // Do not proceed if the Numerator may be negative
388 if (!IsNumeratorNonNegative)
391 const SCEV *
D = SE->
getSCEV(DValue);
394 if (UsedAsNumerator) {
395 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
397 replaceRemWithNumerator(Rem);
404 replaceRemWithNumeratorOrZero(Rem);
409 // Try to replace SRem with URem, if both N and D are known non-negative.
410 // Since we had already check N, we only need to check D now
414 replaceSRemWithURem(Rem);
417bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
423 // Proved no overflow, nuke the overflow check and, if possible, the overflow
424 // intrinsic as well.
436 for (
auto *U : WO->
users()) {
438 if (EVI->getIndices()[0] == 1)
441 assert(EVI->getIndices()[0] == 0 &&
"Only two possibilities!");
442 EVI->replaceAllUsesWith(NewResult);
449 for (
auto *EVI : ToDelete)
450 EVI->eraseFromParent();
459bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
466 SI->getBinaryOp(),
SI->getLHS(),
SI->getRHS(),
SI->getName(),
SI->getIterator());
472 SI->replaceAllUsesWith(BO);
474 DeadInsts.emplace_back(SI);
479bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
480 // It is always legal to replace
481 // icmp <pred> i32 trunc(iv), n
483 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
485 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
486 // Or with either of these if pred is an equality predicate.
488 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
489 // every comparison which uses trunc, it means that we can replace each of
490 // them with comparison of iv against sext/zext(n). We no longer need trunc
493 // TODO: Should we do this if we can widen *some* comparisons, but not all
494 // of them? Sometimes it is enough to enable other optimizations, but the
495 // trunc instruction will stay in the loop.
497 Type *IVTy =
IV->getType();
499 const SCEV *TISCEV = SE->
getSCEV(TI);
501 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
503 bool DoesSExtCollapse =
false;
504 bool DoesZExtCollapse =
false;
506 DoesSExtCollapse =
true;
508 DoesZExtCollapse =
true;
510 // If neither sext nor zext does collapse, it is not profitable to do any
512 if (!DoesSExtCollapse && !DoesZExtCollapse)
515 // Collect users of the trunc that look like comparisons against invariants.
516 // Bail if we find something different.
518 for (
auto *U : TI->
users()) {
519 // We don't care about users in unreachable blocks.
524 if (!ICI)
return false;
529 // If we cannot get rid of trunc, bail.
530 if (ICI->
isSigned() && !DoesSExtCollapse)
534 // For equality, either signed or unsigned works.
538 auto CanUseZExt = [&](ICmpInst *ICI) {
539 // Unsigned comparison can be widened as unsigned.
542 // Is it profitable to do zext?
543 if (!DoesZExtCollapse)
545 // For equality, we can safely zext both parts.
548 // Otherwise we can only use zext when comparing two non-negative or two
549 // negative values. But in practice, we will never pass DoesZExtCollapse
550 // check for a negative value, because zext(trunc(x)) is non-negative. So
551 // it only make sense to check for non-negativity here.
556 // Replace all comparisons against trunc with comparisons against IV.
557 for (
auto *ICI : ICmpUsers) {
558 bool IsSwapped =
L->isLoopInvariant(ICI->
getOperand(0));
562 // For signed/unsigned predicate, replace the old comparison with comparison
563 // of immediate IV against sext/zext of the invariant argument. If we can
564 // use either sext or zext (i.e. we are dealing with equality predicate),
565 // then prefer zext as a more canonical form.
566 // TODO: If we see a signed comparison which can be turned into unsigned,
567 // we can do it here for canonicalization purposes.
569 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
570 if (CanUseZExt(ICI)) {
571 assert(DoesZExtCollapse &&
"Unprofitable zext?");
572 Ext = Builder.CreateZExt(Op1, IVTy,
"zext");
575 assert(DoesSExtCollapse &&
"Unprofitable sext?");
576 Ext = Builder.CreateSExt(Op1, IVTy,
"sext");
582 auto *NewCmp = Builder.CreateICmp(Pred,
IV, Ext);
584 DeadInsts.emplace_back(ICI);
587 // Trunc no longer needed.
589 DeadInsts.emplace_back(TI);
593/// Eliminate an operation that consumes a simple IV and has no observable
594/// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
595/// but UseInst may not be.
596bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
597 Instruction *IVOperand) {
599 eliminateIVComparison(ICmp, IVOperand);
603 bool IsSRem =
Bin->getOpcode() == Instruction::SRem;
604 if (IsSRem ||
Bin->getOpcode() == Instruction::URem) {
605 simplifyIVRemainder(
Bin, IVOperand, IsSRem);
609 if (
Bin->getOpcode() == Instruction::SDiv)
610 return eliminateSDiv(
Bin);
614 if (eliminateOverflowIntrinsic(WO))
618 if (eliminateSaturatingIntrinsic(SI))
622 if (eliminateTrunc(TI))
625 if (eliminateIdentitySCEV(UseInst, IVOperand))
632 if (
auto *BB = L->getLoopPreheader())
633 return BB->getTerminator();
638/// Replace the UseInst with a loop invariant expression if it is safe.
639bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *
I) {
643 // Get the symbolic expression for this instruction.
649 // Do not generate something ridiculous even if S is loop invariant.
655 if (!
Rewriter.isSafeToExpandAt(S, IP)) {
657 <<
" with non-speculable loop invariant: " << *S <<
'\n');
661 auto *Invariant =
Rewriter.expandCodeFor(S,
I->getType(), IP);
662 bool NeedToEmitLCSSAPhis =
false;
664 NeedToEmitLCSSAPhis =
true;
666 I->replaceAllUsesWith(Invariant);
668 <<
" with loop invariant: " << *S <<
'\n');
670 if (NeedToEmitLCSSAPhis) {
675 <<
" inserting LCSSA Phis" <<
'\n');
679 DeadInsts.emplace_back(
I);
683/// Eliminate redundant type cast between integer and float.
684bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
685 if (UseInst->
getOpcode() != CastInst::SIToFP &&
686 UseInst->
getOpcode() != CastInst::UIToFP)
690 // Get the symbolic expression for this instruction.
693 if (UseInst->
getOpcode() == CastInst::SIToFP)
698 if (MaskBits <= DestNumSigBits) {
699 for (User *U : UseInst->
users()) {
700 // Match for fptosi/fptoui of sitofp and with same type.
705 CastInst::CastOps Opcode = CI->getOpcode();
706 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI)
709 Value *Conv =
nullptr;
710 if (IVOperand->
getType() != CI->getType()) {
713 // To match InstCombine logic, we only need sext if both fptosi and
714 // sitofp are used. If one of them is unsigned, then we can use zext.
717 Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name +
".trunc");
718 }
else if (Opcode == CastInst::FPToUI ||
719 UseInst->
getOpcode() == CastInst::UIToFP) {
720 Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name +
".zext");
722 Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name +
".sext");
728 DeadInsts.push_back(CI);
730 <<
" with: " << *Conv <<
'\n');
740/// Eliminate any operation that SCEV can prove is an identity function.
741bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
742 Instruction *IVOperand) {
747 const SCEV *UseSCEV = SE->
getSCEV(UseInst);
748 if (UseSCEV != SE->
getSCEV(IVOperand))
751 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
752 // dominator tree, even if X is an operand to Y. For instance, in
754 // %iv = phi i32 {0,+,1}
755 // br %cond, label %left, label %merge
758 // %X = add i32 %iv, 0
762 // %M = phi (%X, %iv)
764 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
765 // %M.replaceAllUsesWith(%X) would be incorrect.
768 // If UseInst is not a PHI node then we know that IVOperand dominates
769 // UseInst directly from the legality of SSA.
770 if (!DT || !DT->
dominates(IVOperand, UseInst))
776 // Make sure the operand is not more poisonous than the instruction.
782 for (Instruction *
I : DropPoisonGeneratingInsts)
783 I->dropPoisonGeneratingAnnotations();
786 LLVM_DEBUG(
dbgs() <<
"INDVARS: Eliminated identity: " << *UseInst <<
'\n');
792 DeadInsts.emplace_back(UseInst);
796bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO,
797 Instruction *IVOperand) {
799 strengthenOverflowingOperation(BO, IVOperand)) ||
803/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
804/// unsigned-overflow. Returns true if anything changed, false otherwise.
805bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
806 Instruction *IVOperand) {
818 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
819 // flags on addrecs while performing zero/sign extensions. We could call
820 // forgetValue() here to make sure those flags also propagate to any other
821 // SCEV expressions based on the addrec. However, this can have pathological
822 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
826/// Annotate the Shr in (X << IVOperand) >> C as exact using the
827/// information from the IV's range. Returns true if anything changed, false
829bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
830 Instruction *IVOperand) {
831 if (BO->
getOpcode() == Instruction::Shl) {
834 for (
auto *U : BO->
users()) {
853/// Add all uses of Def to the current IV's worklist.
854void SimplifyIndvar::pushIVUsers(
855 Instruction *Def, SmallPtrSet<Instruction *, 16> &Simplified,
856 SmallVectorImpl<std::pair<Instruction *, Instruction *>> &SimpleIVUsers) {
857 for (User *U :
Def->users()) {
860 // Avoid infinite or exponential worklist processing.
861 // Also ensure unique worklist users.
862 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
867 // Only change the current Loop, do not change the other parts (e.g. other
869 if (!
L->contains(UI))
872 // Do not push the same instruction more than once.
876 SimpleIVUsers.push_back(std::make_pair(UI, Def));
880/// Return true if this instruction generates a simple SCEV
881/// expression in terms of that IV.
883/// This is similar to IVUsers' isInteresting() but processes each instruction
884/// non-recursively when the operand is already known to be a simpleIVUser.
890 // Get the symbolic expression for this instruction.
893 // Only consider affine recurrences.
901/// Iteratively perform simplification on a worklist of users
902/// of the specified induction variable. Each successive simplification may push
903/// more users which may themselves be candidates for simplification.
905/// This algorithm does not require IVUsers analysis. Instead, it simplifies
906/// instructions in-place during analysis. Rather than rewriting induction
907/// variables bottom-up from their users, it transforms a chain of IVUsers
908/// top-down, updating the IR only when it encounters a clear optimization
911/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
913void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
917 // Instructions processed by SimplifyIndvar for CurrIV.
920 // Use-def pairs if IV users waiting to be processed for CurrIV.
923 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
924 // called multiple times for the same LoopPhi. This is the proper thing to
925 // do for loop header phis that use each other.
926 pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
928 while (!SimpleIVUsers.
empty()) {
929 std::pair<Instruction*, Instruction*> UseOper =
933 // If a user of the IndVar is trivially dead, we prefer just to mark it dead
934 // rather than try to do some complex analysis or transformation (such as
935 // widening) basing on it.
936 // TODO: Propagate TLI and pass it here to handle more cases.
938 DeadInsts.emplace_back(UseInst);
942 // Bypass back edges to avoid extra work.
943 if (UseInst == CurrIV)
continue;
945 // Try to replace UseInst with a loop invariant before any other
947 if (replaceIVUserWithLoopInvariant(UseInst))
950 // Go further for the bitcast 'prtoint ptr to i64' or if the cast is done
953 for (Use &U : UseInst->
uses()) {
955 if (replaceIVUserWithLoopInvariant(User))
956 break;
// done replacing
960 for (
unsigned N = 0; IVOperand; ++
N) {
964 Value *NewOper = foldIVUser(UseInst, IVOperand);
966 break;
// done folding
972 if (eliminateIVUser(UseInst, IVOperand)) {
973 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
978 if (strengthenBinaryOp(BO, IVOperand)) {
979 // re-queue uses of the now modified binary operator and fall
980 // through to the checks that remain.
981 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
985 // Try to use integer induction for FPToSI of float induction directly.
986 if (replaceFloatIVWithIntegerIV(UseInst)) {
987 // Re-queue the potentially new direct uses of IVOperand.
988 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
998 pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1007/// Simplify instructions that use this induction variable
1008/// by using ScalarEvolution to analyze the IV's recurrence.
1009/// Returns a pair where the first entry indicates that the function makes
1010/// changes and the second entry indicates that it introduced new opportunities
1011/// for loop unswitching.
1019 SIV.simplifyUsers(CurrIV, V);
1020 return {SIV.hasChanged(), SIV.runUnswitching()};
1023/// Simplify users of induction variables within this
1024/// loop. This does not actually change or add IVs.
1029#if LLVM_ENABLE_ABI_BREAKING_CHECKS
1034 const auto &[
C,
_] =
1044//===----------------------------------------------------------------------===//
1045// Widen Induction Variables - Extend the width of an IV to cover its
1047//===----------------------------------------------------------------------===//
1057 ScalarEvolution *SE;
1060 // Does the module have any calls to the llvm.experimental.guard intrinsic
1061 // at all? If not we can avoid scanning instructions looking for guards.
1067 unsigned NumElimExt = 0;
1068 unsigned NumWidened = 0;
1071 PHINode *WidePhi =
nullptr;
1073 const SCEV *WideIncExpr =
nullptr;
1074 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1076 SmallPtrSet<Instruction *,16> Widened;
1080 // A map tracking the kind of extension used to widen each narrow IV
1081 // and narrow IV user.
1082 // Key: pointer to a narrow IV or IV user.
1083 // Value: the kind of extension used to widen this Instruction.
1084 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1086 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1088 // A map with control-dependent ranges for post increment IV uses. The key is
1089 // a pair of IV def and a use of this def denoting the context. The value is
1090 // a ConstantRange representing possible values of the def at the given
1092 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1094 std::optional<ConstantRange> getPostIncRangeInfo(
Value *Def,
1095 Instruction *UseI) {
1096 DefUserPair
Key(Def, UseI);
1097 auto It = PostIncRangeInfos.
find(
Key);
1098 return It == PostIncRangeInfos.
end()
1099 ? std::optional<ConstantRange>(std::nullopt)
1100 : std::optional<ConstantRange>(It->second);
1103 void calculatePostIncRanges(PHINode *OrigPhi);
1104 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1106 void updatePostIncRangeInfo(
Value *Def, Instruction *UseI, ConstantRange R) {
1107 DefUserPair
Key(Def, UseI);
1110 It->second =
R.intersectWith(It->second);
1114 /// Record a link in the Narrow IV def-use chain along with the WideIV that
1115 /// computes the same value as the Narrow IV def. This avoids caching Use*
1117 struct NarrowIVDefUse {
1122 // True if the narrow def is never negative. Tracking this information lets
1123 // us use a sign extension instead of a zero extension or vice versa, when
1124 // profitable and legal.
1125 bool NeverNegative =
false;
1127 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1129 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1130 NeverNegative(NeverNegative) {}
1133 WidenIV(
const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1134 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1139 unsigned getNumElimExt() {
return NumElimExt; };
1140 unsigned getNumWidened() {
return NumWidened; };
1143 Value *createExtendInst(
Value *NarrowOper,
Type *WideType,
bool IsSigned,
1146 Instruction *cloneIVUser(NarrowIVDefUse DU,
const SCEVAddRecExpr *WideAR);
1147 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1148 const SCEVAddRecExpr *WideAR);
1149 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1151 ExtendKind getExtendKind(Instruction *
I);
1153 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1155 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1157 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1159 const SCEV *getSCEVByOpCode(
const SCEV *
LHS,
const SCEV *
RHS,
1160 unsigned OpCode)
const;
1163 PHINode *OrigPhi, PHINode *WidePhi);
1164 void truncateIVUse(NarrowIVDefUse DU);
1166 bool widenLoopCompare(NarrowIVDefUse DU);
1167 bool widenWithVariantUse(NarrowIVDefUse DU);
1169 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1176/// Determine the insertion point for this user. By default, insert immediately
1177/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1178/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1179/// common dominator for the incoming blocks. A nullptr can be returned if no
1180/// viable location is found: it may happen if User is a PHI and Def only comes
1181/// to this PHI from unreachable blocks.
1189 for (
unsigned i = 0, e =
PHI->getNumIncomingValues(); i != e; ++i) {
1190 if (
PHI->getIncomingValue(i) != Def)
1206 // If we have skipped all inputs, it means that Def only comes to Phi from
1207 // unreachable blocks.
1215 assert(DT->
dominates(DefI, InsertPt) &&
"def does not dominate all uses");
1220 for (
auto *DTN = (*DT)[InsertPt->
getParent()]; DTN; DTN = DTN->getIDom())
1222 return DTN->getBlock()->getTerminator();
1230 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1231 L(LI->getLoopFor(OrigPhi->
getParent())), SE(SEv), DT(DTree),
1234 assert(L->getHeader() == OrigPhi->
getParent() &&
"Phi must be an IV");
1235 ExtendKindMap[OrigPhi] = WI.
IsSigned ? ExtendKind::Sign : ExtendKind::Zero;
1238Value *WidenIV::createExtendInst(
Value *NarrowOper,
Type *WideType,
1240 // Set the debug location and conservative insertion point.
1242 // Hoist the insertion point into loop preheaders as far as possible.
1244 L &&
L->getLoopPreheader() &&
L->isLoopInvariant(NarrowOper);
1245 L =
L->getParentLoop())
1246 Builder.SetInsertPoint(
L->getLoopPreheader()->getTerminator());
1248 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1249 Builder.CreateZExt(NarrowOper, WideType);
1252/// Instantiate a wide operation to replace a narrow operation. This only needs
1253/// to handle operations that can evaluation to SCEVAddRec. It can safely return
1254/// 0 for any operation we decide not to clone.
1255Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1256 const SCEVAddRecExpr *WideAR) {
1257 unsigned Opcode = DU.NarrowUse->
getOpcode();
1261 case Instruction::Add:
1262 case Instruction::Mul:
1263 case Instruction::UDiv:
1264 case Instruction::Sub:
1265 return cloneArithmeticIVUser(DU, WideAR);
1267 case Instruction::And:
1268 case Instruction::Or:
1269 case Instruction::Xor:
1270 case Instruction::Shl:
1271 case Instruction::LShr:
1272 case Instruction::AShr:
1273 return cloneBitwiseIVUser(DU);
1277Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1282 LLVM_DEBUG(
dbgs() <<
"Cloning bitwise IVUser: " << *NarrowUse <<
"\n");
1284 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1285 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1286 // invariant and will be folded or hoisted. If it actually comes from a
1287 // widened IV, it should be removed during a future call to widenIVUse.
1288 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign;
1291 : createExtendInst(NarrowUse->
getOperand(0), WideType,
1292 IsSigned, NarrowUse);
1295 : createExtendInst(NarrowUse->
getOperand(1), WideType,
1296 IsSigned, NarrowUse);
1302 Builder.Insert(WideBO);
1303 WideBO->copyIRFlags(NarrowBO);
1307Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1308 const SCEVAddRecExpr *WideAR) {
1313 LLVM_DEBUG(
dbgs() <<
"Cloning arithmetic IVUser: " << *NarrowUse <<
"\n");
1315 unsigned IVOpIdx = (NarrowUse->
getOperand(0) == NarrowDef) ? 0 : 1;
1317 // We're trying to find X such that
1319 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1321 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1322 // and check using SCEV if any of them are correct.
1324 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1325 // correct solution to X.
1326 auto GuessNonIVOperand = [&](
bool SignExt) {
1327 const SCEV *WideLHS;
1328 const SCEV *WideRHS;
1330 auto GetExtend = [
this, SignExt](
const SCEV *S,
Type *Ty) {
1337 WideLHS = SE->
getSCEV(WideDef);
1339 WideRHS = GetExtend(NarrowRHS, WideType);
1342 WideLHS = GetExtend(NarrowLHS, WideType);
1343 WideRHS = SE->
getSCEV(WideDef);
1346 // WideUse is "WideDef `op.wide` X" as described in the comment.
1347 const SCEV *WideUse =
1348 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->
getOpcode());
1350 return WideUse == WideAR;
1353 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign;
1354 if (!GuessNonIVOperand(SignExtend)) {
1355 SignExtend = !SignExtend;
1356 if (!GuessNonIVOperand(SignExtend))
1362 : createExtendInst(NarrowUse->
getOperand(0), WideType,
1363 SignExtend, NarrowUse);
1366 : createExtendInst(NarrowUse->
getOperand(1), WideType,
1367 SignExtend, NarrowUse);
1374 Builder.Insert(WideBO);
1375 WideBO->copyIRFlags(NarrowBO);
1379WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *
I) {
1380 auto It = ExtendKindMap.
find(
I);
1381 assert(It != ExtendKindMap.
end() &&
"Instruction not yet extended!");
1385const SCEV *WidenIV::getSCEVByOpCode(
const SCEV *
LHS,
const SCEV *
RHS,
1386 unsigned OpCode)
const {
1388 case Instruction::Add:
1390 case Instruction::Sub:
1392 case Instruction::Mul:
1394 case Instruction::UDiv:
1403// Represents a interesting integer binary operation for
1404// getExtendedOperandRecurrence. This may be a shl that is being treated as a
1405// multiply or a 'or disjoint' that is being treated as 'add nsw nuw'.
1408 std::array<Value *, 2> Operands;
1412 explicit BinaryOp(Instruction *
Op)
1414 Operands({
Op->getOperand(0),
Op->getOperand(1)}) {
1416 IsNSW = OBO->hasNoSignedWrap();
1417 IsNUW = OBO->hasNoUnsignedWrap();
1422 bool IsNSW =
false,
bool IsNUW =
false)
1423 : Opcode(Opcode), Operands({
LHS,
RHS}), IsNSW(IsNSW), IsNUW(IsNUW) {}
1426}
// end anonymous namespace
1429 switch (
Op->getOpcode()) {
1430 case Instruction::Add:
1431 case Instruction::Sub:
1432 case Instruction::Mul:
1433 return BinaryOp(
Op);
1434 case Instruction::Or: {
1435 // Convert or disjoint into add nuw nsw.
1437 return BinaryOp(Instruction::Add,
Op->getOperand(0),
Op->getOperand(1),
1438 /*IsNSW=*/true,
/*IsNUW=*/true);
1441 case Instruction::Shl: {
1445 // If the shift count is not less than the bitwidth, the result of
1446 // the shift is undefined. Don't try to analyze it, because the
1447 // resolution chosen here may differ from the resolution chosen in
1448 // other parts of the compiler.
1449 if (SA->getValue().ult(
BitWidth)) {
1450 // We can safely preserve the nuw flag in all cases. It's also safe to
1451 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
1452 // requires special handling. It can be preserved as long as we're not
1453 // left shifting by bitwidth - 1.
1454 bool IsNUW =
Op->hasNoUnsignedWrap();
1455 bool IsNSW =
Op->hasNoSignedWrap() &&
1456 (IsNUW || SA->getValue().ult(
BitWidth - 1));
1459 ConstantInt::get(
Op->getContext(),
1461 return BinaryOp(Instruction::Mul,
Op->getOperand(0),
X, IsNSW, IsNUW);
1469 return std::nullopt;
1472/// No-wrap operations can transfer sign extension of their result to their
1473/// operands. Generate the SCEV value for the widened operation without
1474/// actually modifying the IR yet. If the expression after extending the
1475/// operands is an AddRec for this loop, return the AddRec and the kind of
1477WidenIV::WidenedRecTy
1478WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1481 return {
nullptr, ExtendKind::Unknown};
1483 assert((
Op->Opcode == Instruction::Add ||
Op->Opcode == Instruction::Sub ||
1484 Op->Opcode == Instruction::Mul) &&
1485 "Unexpected opcode");
1487 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1488 // if extending the other will lead to a recurrence.
1489 const unsigned ExtendOperIdx =
Op->Operands[0] == DU.NarrowDef ? 1 : 0;
1490 assert(
Op->Operands[1 - ExtendOperIdx] == DU.NarrowDef &&
"bad DU");
1492 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1493 if (!(ExtKind == ExtendKind::Sign &&
Op->IsNSW) &&
1494 !(ExtKind == ExtendKind::Zero &&
Op->IsNUW)) {
1495 ExtKind = ExtendKind::Unknown;
1497 // For a non-negative NarrowDef, we can choose either type of
1498 // extension. We want to use the current extend kind if legal
1499 // (see above), and we only hit this code if we need to check
1500 // the opposite case.
1501 if (DU.NeverNegative) {
1503 ExtKind = ExtendKind::Sign;
1504 }
else if (
Op->IsNUW) {
1505 ExtKind = ExtendKind::Zero;
1510 const SCEV *ExtendOperExpr = SE->
getSCEV(
Op->Operands[ExtendOperIdx]);
1511 if (ExtKind == ExtendKind::Sign)
1513 else if (ExtKind == ExtendKind::Zero)
1516 return {
nullptr, ExtendKind::Unknown};
1518 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1519 // flags. This instruction may be guarded by control flow that the no-wrap
1520 // behavior depends on. Non-control-equivalent instructions can be mapped to
1521 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1522 // semantics to those operations.
1523 const SCEV *lhs = SE->
getSCEV(DU.WideDef);
1524 const SCEV *rhs = ExtendOperExpr;
1526 // Let's swap operands to the initial order for the case of non-commutative
1527 // operations, like SUB. See PR21014.
1528 if (ExtendOperIdx == 0)
1530 const SCEVAddRecExpr *AddRec =
1533 if (!AddRec || AddRec->
getLoop() != L)
1534 return {
nullptr, ExtendKind::Unknown};
1536 return {AddRec, ExtKind};
1539/// Is this instruction potentially interesting for further simplification after
1540/// widening it's type? In other words, can the extend be safely hoisted out of
1541/// the loop with SCEV reducing the value to a recurrence on the same loop. If
1542/// so, return the extended recurrence and the kind of extension used. Otherwise
1543/// return {nullptr, ExtendKind::Unknown}.
1544WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1546 return {
nullptr, ExtendKind::Unknown};
1548 const SCEV *NarrowExpr = SE->
getSCEV(DU.NarrowUse);
1551 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1552 // index. So don't follow this use.
1553 return {
nullptr, ExtendKind::Unknown};
1556 const SCEV *WideExpr;
1558 if (DU.NeverNegative) {
1561 ExtKind = ExtendKind::Sign;
1564 ExtKind = ExtendKind::Zero;
1566 }
else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) {
1568 ExtKind = ExtendKind::Sign;
1571 ExtKind = ExtendKind::Zero;
1574 if (!AddRec || AddRec->
getLoop() != L)
1575 return {
nullptr, ExtendKind::Unknown};
1576 return {AddRec, ExtKind};
1579/// This IV user cannot be widened. Replace this use of the original narrow IV
1580/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1581void WidenIV::truncateIVUse(NarrowIVDefUse DU) {
1585 LLVM_DEBUG(
dbgs() <<
"INDVARS: Truncate IV " << *DU.WideDef <<
" for user "
1586 << *DU.NarrowUse <<
"\n");
1587 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1590 Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType(),
"",
1591 DU.NeverNegative || ExtKind == ExtendKind::Zero,
1592 DU.NeverNegative || ExtKind == ExtendKind::Sign);
1593 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1596/// If the narrow use is a compare instruction, then widen the compare
1597// (and possibly the other operand). The extend operation is hoisted into the
1598// loop preheader as far as possible.
1599bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1604 // We can legally widen the comparison in the following two cases:
1606 // - The signedness of the IV extension and comparison match
1608 // - The narrow IV is always non-negative (and thus its sign extension is
1609 // equal to its zero extension). For instance, let's say we're zero
1610 // extending %narrow for the following use
1612 // icmp slt i32 %narrow, %val ... (A)
1614 // and %narrow is always non-negative. Then
1616 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1617 // == icmp slt i32 zext(%narrow), sext(%val)
1618 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1619 bool CmpPreferredSign =
Cmp->hasSameSign() ? IsSigned :
Cmp->isSigned();
1620 if (!DU.NeverNegative && IsSigned != CmpPreferredSign)
1623 Value *
Op =
Cmp->getOperand(
Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1626 assert(CastWidth <= IVWidth &&
"Unexpected width while widening compare.");
1628 // Widen the compare instruction.
1631 // Widen the other operand of the compare, if necessary.
1632 if (CastWidth < IVWidth) {
1633 // If the narrow IV is always non-negative and the other operand is sext,
1634 // widen using sext so we can combine them. This works for all non-signed
1635 // comparison predicates.
1637 CmpPreferredSign =
true;
1639 Value *ExtOp = createExtendInst(
Op, WideType, CmpPreferredSign, Cmp);
1645// The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1646// will not work when:
1647// 1) SCEV traces back to an instruction inside the loop that SCEV can not
1648// expand, eg. add %indvar, (load %addr)
1649// 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1650// While SCEV fails to avoid trunc, we can still try to use instruction
1651// combining approach to prove trunc is not required. This can be further
1652// extended with other instruction combining checks, but for now we handle the
1653// following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1656// %c = sub nsw %b, %indvar
1657// %d = sext %c to i64
1659// %indvar.ext1 = sext %indvar to i64
1660// %m = sext %b to i64
1661// %d = sub nsw i64 %m, %indvar.ext1
1662// Therefore, as long as the result of add/sub/mul is extended to wide type, no
1663// trunc is required regardless of how %b is generated. This pattern is common
1664// when calculating address in 64 bit architecture
1665bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1670 // Handle the common case of add<nsw/nuw>
1672 // Only Add/Sub/Mul instructions are supported.
1673 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1674 OpCode != Instruction::Mul)
1677 // The operand that is not defined by NarrowDef of DU. Let's call it the
1683 const OverflowingBinaryOperator *OBO =
1685 ExtendKind ExtKind = getExtendKind(NarrowDef);
1686 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->
hasNoSignedWrap();
1688 auto AnotherOpExtKind = ExtKind;
1690 // Check that all uses are either:
1691 // - narrow def (in case of we are widening the IV increment);
1692 // - single-input LCSSA Phis;
1693 // - comparison of the chosen type;
1694 // - extend of the chosen type (raison d'etre).
1695 SmallVector<Instruction *, 4> ExtUsers;
1698 for (Use &U : NarrowUse->
uses()) {
1700 if (User == NarrowDef)
1702 if (!
L->contains(User)) {
1704 // Make sure there is only 1 input, so that we don't have to split
1706 if (LCSSAPhi->getNumOperands() != 1)
1713 // We have 3 types of predicates: signed, unsigned and equality
1714 // predicates. For equality, it's legal to widen icmp for either sign and
1715 // zero extend. For sign extend, we can also do so for signed predicates,
1716 // likeweise for zero extend we can widen icmp for unsigned predicates.
1717 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred))
1719 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred))
1724 if (ExtKind == ExtendKind::Sign)
1728 if (!User ||
User->getType() != WideType)
1732 if (ExtUsers.
empty()) {
1737 // We'll prove some facts that should be true in the context of ext users. If
1738 // there is no users, we are done now. If there are some, pick their common
1739 // dominator as context.
1742 if (!CanSignExtend && !CanZeroExtend) {
1743 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1744 // will most likely not see it. Let's try to prove it.
1745 if (OpCode != Instruction::Add)
1747 if (ExtKind != ExtendKind::Zero)
1751 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1754 // We cannot use a different extend kind for the same operand.
1763 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1764 // neg(zext(neg(op))), which is basically sext(op).
1765 AnotherOpExtKind = ExtendKind::Sign;
1768 // Verifying that Defining operand is an AddRec
1769 const SCEV *Op1 = SE->
getSCEV(WideDef);
1771 if (!AddRecOp1 || AddRecOp1->
getLoop() != L)
1774 LLVM_DEBUG(
dbgs() <<
"Cloning arithmetic IVUser: " << *NarrowUse <<
"\n");
1776 // Generating a widening use instruction.
1780 : createExtendInst(NarrowUse->
getOperand(0), WideType,
1781 AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1785 : createExtendInst(NarrowUse->
getOperand(1), WideType,
1786 AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1792 Builder.Insert(WideBO);
1793 WideBO->copyIRFlags(NarrowBO);
1794 ExtendKindMap[NarrowUse] = ExtKind;
1796 for (Instruction *User : ExtUsers) {
1797 assert(
User->getType() == WideType &&
"Checked before!");
1798 LLVM_DEBUG(
dbgs() <<
"INDVARS: eliminating " << *User <<
" replaced by "
1799 << *WideBO <<
"\n");
1801 User->replaceAllUsesWith(WideBO);
1805 for (PHINode *User : LCSSAPhiUsers) {
1806 assert(
User->getNumOperands() == 1 &&
"Checked before!");
1807 Builder.SetInsertPoint(User);
1809 Builder.CreatePHI(WideBO->getType(), 1,
User->getName() +
".wide");
1810 BasicBlock *LoopExitingBlock =
User->getParent()->getSinglePredecessor();
1811 assert(LoopExitingBlock &&
L->contains(LoopExitingBlock) &&
1812 "Not a LCSSA Phi?");
1813 WidePN->addIncoming(WideBO, LoopExitingBlock);
1814 Builder.SetInsertPoint(
User->getParent(),
1815 User->getParent()->getFirstInsertionPt());
1816 auto *TruncPN = Builder.CreateTrunc(WidePN,
User->getType());
1817 User->replaceAllUsesWith(TruncPN);
1821 for (ICmpInst *User : ICmpUsers) {
1822 Builder.SetInsertPoint(User);
1826 if (ExtKind == ExtendKind::Zero)
1827 return Builder.CreateZExt(V, WideBO->getType());
1829 return Builder.CreateSExt(V, WideBO->getType());
1831 auto Pred =
User->getPredicate();
1832 auto *
LHS = ExtendedOp(
User->getOperand(0));
1833 auto *
RHS = ExtendedOp(
User->getOperand(1));
1835 Builder.CreateICmp(Pred,
LHS,
RHS,
User->getName() +
".wide");
1836 User->replaceAllUsesWith(WideCmp);
1843/// Determine whether an individual user of the narrow IV can be widened. If so,
1844/// return the wide clone of the user.
1845Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU,
1846 SCEVExpander &
Rewriter, PHINode *OrigPhi,
1849 "Should already know the kind of extension used to widen NarrowDef");
1851 // This narrow use can be widened by a sext if it's non-negative or its narrow
1852 // def was widened by a sext. Same for zext.
1853 bool CanWidenBySExt =
1854 DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1855 bool CanWidenByZExt =
1856 DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero;
1858 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1860 if (LI->
getLoopFor(UsePhi->getParent()) != L) {
1861 // For LCSSA phis, sink the truncate outside the loop.
1862 // After SimplifyCFG most loop exit targets have a single predecessor.
1863 // Otherwise fall back to a truncate within the loop.
1864 if (UsePhi->getNumOperands() != 1)
1867 // Widening the PHI requires us to insert a trunc. The logical place
1868 // for this trunc is in the same BB as the PHI. This is not possible if
1869 // the BB is terminated by a catchswitch.
1875 UsePhi->getIterator());
1876 WidePhi->
addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1879 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->
getType(),
"",
1880 CanWidenByZExt, CanWidenBySExt);
1883 LLVM_DEBUG(
dbgs() <<
"INDVARS: Widen lcssa phi " << *UsePhi <<
" to "
1884 << *WidePhi <<
"\n");
1890 // Our raison d'etre! Eliminate sign and zero extension.
1893 Value *NewDef = DU.WideDef;
1894 if (DU.NarrowUse->
getType() != WideType) {
1897 if (CastWidth < IVWidth) {
1898 // The cast isn't as wide as the IV, so insert a Trunc.
1900 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->
getType(),
"",
1901 CanWidenByZExt, CanWidenBySExt);
1904 // A wider extend was hidden behind a narrower one. This may induce
1905 // another round of IV widening in which the intermediate IV becomes
1906 // dead. It should be very rare.
1908 <<
" not wide enough to subsume " << *DU.NarrowUse
1911 NewDef = DU.NarrowUse;
1914 if (NewDef != DU.NarrowUse) {
1916 <<
" replaced by " << *DU.WideDef <<
"\n");
1921 // Now that the extend is gone, we want to expose it's uses for potential
1922 // further simplification. We don't need to directly inform SimplifyIVUsers
1923 // of the new users, because their parent IV will be processed later as a
1924 // new loop phi. If we preserved IVUsers analysis, we would also want to
1925 // push the uses of WideDef here.
1927 // No further widening is needed. The deceased [sz]ext had done it for us.
1931 auto tryAddRecExpansion = [&]() -> Instruction* {
1932 // Does this user itself evaluate to a recurrence after widening?
1933 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1934 if (!WideAddRec.first)
1935 WideAddRec = getWideRecurrence(DU);
1936 assert((WideAddRec.first ==
nullptr) ==
1937 (WideAddRec.second == ExtendKind::Unknown));
1938 if (!WideAddRec.first)
1941 auto CanUseWideInc = [&]() {
1944 // Reuse the IV increment that SCEVExpander created. Recompute flags,
1945 // unless the flags for both increments agree and it is safe to use the
1946 // ones from the original inc. In that case, the new use of the wide
1947 // increment won't be more poisonous.
1948 bool NeedToRecomputeFlags =
1950 OrigPhi, WidePhi, DU.NarrowUse, WideInc) ||
1953 return WideAddRec.first == WideIncExpr &&
1954 Rewriter.hoistIVInc(WideInc, DU.NarrowUse, NeedToRecomputeFlags);
1958 if (CanUseWideInc())
1961 WideUse = cloneIVUser(DU, WideAddRec.first);
1965 // Evaluation of WideAddRec ensured that the narrow expression could be
1966 // extended outside the loop without overflow. This suggests that the wide use
1967 // evaluates to the same expression as the extended narrow use, but doesn't
1968 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1969 // where it fails, we simply throw away the newly created wide use.
1970 if (WideAddRec.first != SE->
getSCEV(WideUse)) {
1971 LLVM_DEBUG(
dbgs() <<
"Wide use expression mismatch: " << *WideUse <<
": "
1972 << *SE->
getSCEV(WideUse) <<
" != " << *WideAddRec.first
1978 // if we reached this point then we are going to replace
1979 // DU.NarrowUse with WideUse. Reattach DbgValue then.
1982 ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1983 // Returning WideUse pushes it on the worklist.
1987 if (
auto *
I = tryAddRecExpansion())
1990 // If use is a loop condition, try to promote the condition instead of
1991 // truncating the IV first.
1992 if (widenLoopCompare(DU))
1995 // We are here about to generate a truncate instruction that may hurt
1996 // performance because the scalar evolution expression computed earlier
1997 // in WideAddRec.first does not indicate a polynomial induction expression.
1998 // In that case, look at the operands of the use instruction to determine
1999 // if we can still widen the use instead of truncating its operand.
2000 if (widenWithVariantUse(DU))
2003 // This user does not evaluate to a recurrence after widening, so don't
2004 // follow it. Instead insert a Trunc to kill off the original use,
2005 // eventually isolating the original narrow IV so it can be removed.
2010/// Add eligible users of NarrowDef to NarrowIVUsers.
2011void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
2012 const SCEV *NarrowSCEV = SE->
getSCEV(NarrowDef);
2013 bool NonNegativeDef =
2016 for (User *U : NarrowDef->
users()) {
2019 // Handle data flow merges and bizarre phi cycles.
2020 if (!Widened.
insert(NarrowUser).second)
2023 bool NonNegativeUse =
false;
2024 if (!NonNegativeDef) {
2025 // We might have a control-dependent range information for this context.
2026 if (
auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
2027 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
2030 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
2031 NonNegativeDef || NonNegativeUse);
2035/// Process a single induction variable. First use the SCEVExpander to create a
2036/// wide induction variable that evaluates to the same recurrence as the
2037/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
2038/// def-use chain. After widenIVUse has processed all interesting IV users, the
2039/// narrow IV will be isolated for removal by DeleteDeadPHIs.
2041/// It would be simpler to delete uses as they are processed, but we must avoid
2042/// invalidating SCEV expressions.
2043PHINode *WidenIV::createWideIV(SCEVExpander &
Rewriter) {
2044 // Is this phi an induction variable?
2049 // Widen the induction variable expression.
2050 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign
2055 "Expect the new IV expression to preserve its type");
2057 // Can the IV be extended outside the loop without overflow?
2059 if (!AddRec || AddRec->
getLoop() != L)
2062 // An AddRec must have loop-invariant operands. Since this AddRec is
2063 // materialized by a loop header phi, the expression cannot have any post-loop
2064 // operands, so they must dominate the loop header.
2068 "Loop header phi recurrence inputs do not dominate the loop");
2070 // Iterate over IV uses (including transitive ones) looking for IV increments
2071 // of the form 'add nsw %iv, <const>'. For each increment and each use of
2072 // the increment calculate control-dependent range information basing on
2073 // dominating conditions inside of the loop (e.g. a range check inside of the
2074 // loop). Calculated ranges are stored in PostIncRangeInfos map.
2076 // Control-dependent range information is later used to prove that a narrow
2077 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
2078 // this on demand because when pushNarrowIVUsers needs this information some
2079 // of the dominating conditions might be already widened.
2081 calculatePostIncRanges(OrigPhi);
2083 // The rewriter provides a value for the desired IV expression. This may
2084 // either find an existing phi or materialize a new one. Either way, we
2085 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
2086 // of the phi-SCC dominates the loop entry.
2087 Instruction *InsertPt = &*
L->getHeader()->getFirstInsertionPt();
2088 Value *ExpandInst =
Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
2089 // If the wide phi is not a phi node, for example a cast node, like bitcast,
2090 // inttoptr, ptrtoint, just skip for now.
2092 // if the cast node is an inserted instruction without any user, we should
2093 // remove it to make sure the pass don't touch the function as we can not
2101 // Remembering the WideIV increment generated by SCEVExpander allows
2102 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
2103 // employ a general reuse mechanism because the call above is the only call to
2104 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
2105 if (BasicBlock *LatchBlock =
L->getLoopLatch()) {
2109 WideIncExpr = SE->
getSCEV(WideInc);
2110 // Propagate the debug location associated with the original loop
2111 // increment to the new (widened) increment.
2116 // We are replacing a narrow IV increment with a wider IV increment. If
2117 // the original (narrow) increment did not wrap, the wider increment one
2118 // should not wrap either. Set the flags to be the union of both wide
2119 // increment and original increment; this ensures we preserve flags SCEV
2120 // could infer for the wider increment. Limit this only to cases where
2121 // both increments directly increment the corresponding PHI nodes and have
2122 // the same opcode. It is not safe to re-use the flags from the original
2123 // increment, if it is more complex and SCEV expansion may have yielded a
2124 // more simplified wider increment.
2126 OrigInc, WideInc) &&
2130 OrigInc->hasNoUnsignedWrap());
2132 OrigInc->hasNoSignedWrap());
2140 // Traverse the def-use chain using a worklist starting at the original IV.
2141 assert(Widened.
empty() && NarrowIVUsers.empty() &&
"expect initial state" );
2144 pushNarrowIVUsers(OrigPhi, WidePhi);
2146 while (!NarrowIVUsers.empty()) {
2147 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
2149 // Process a def-use edge. This may replace the use, so don't hold a
2150 // use_iterator across it.
2153 // Follow all def-use edges from the previous narrow use.
2155 pushNarrowIVUsers(DU.NarrowUse, WideUse);
2157 // widenIVUse may have removed the def-use edge.
2162 // Attach any debug information to the new PHI.
2168/// Calculates control-dependent range for the given def at the given context
2169/// by looking at dominating conditions inside of the loop
2170void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
2171 Instruction *NarrowUser) {
2172 Value *NarrowDefLHS;
2173 const APInt *NarrowDefRHS;
2179 auto UpdateRangeFromCondition = [&](
Value *Condition,
bool TrueDest) {
2189 auto CmpConstrainedLHSRange =
2191 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
2194 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
2197 auto UpdateRangeFromGuards = [&](
Instruction *Ctx) {
2201 for (Instruction &
I :
make_range(Ctx->getIterator().getReverse(),
2202 Ctx->getParent()->rend())) {
2205 UpdateRangeFromCondition(
C,
/*TrueDest=*/true);
2209 UpdateRangeFromGuards(NarrowUser);
2212 // If NarrowUserBB is statically unreachable asking dominator queries may
2213 // yield surprising results. (e.g. the block may not have a dom tree node)
2217 for (
auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2218 L->contains(DTB->getBlock());
2219 DTB = DTB->getIDom()) {
2220 auto *BB = DTB->getBlock();
2221 auto *TI = BB->getTerminator();
2222 UpdateRangeFromGuards(TI);
2225 if (!BI || !BI->isConditional())
2228 auto *TrueSuccessor = BI->getSuccessor(0);
2229 auto *FalseSuccessor = BI->getSuccessor(1);
2231 auto DominatesNarrowUser = [
this, NarrowUser] (BasicBlockEdge BBE) {
2232 return BBE.isSingleEdge() &&
2236 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2237 UpdateRangeFromCondition(BI->getCondition(),
/*TrueDest=*/true);
2239 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2240 UpdateRangeFromCondition(BI->getCondition(),
/*TrueDest=*/false);
2244/// Calculates PostIncRangeInfos map for the given IV
2245void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2246 SmallPtrSet<Instruction *, 16> Visited;
2251 while (!Worklist.
empty()) {
2254 for (Use &U : NarrowDef->
uses()) {
2257 // Don't go looking outside the current loop.
2258 auto *NarrowUserLoop = (*LI)[NarrowUser->
getParent()];
2259 if (!NarrowUserLoop || !
L->contains(NarrowUserLoop))
2262 if (!Visited.
insert(NarrowUser).second)
2267 calculatePostIncRange(NarrowDef, NarrowUser);
2275 unsigned &NumElimExt,
unsigned &NumWidened,
2278 PHINode *WidePHI = Widener.createWideIV(Rewriter);
2279 NumElimExt = Widener.getNumElimExt();
2280 NumWidened = Widener.getNumWidened();
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static const Function * getParent(const Value *V)
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
iv Induction Variable Users
static cl::opt< bool > UsePostIncrementRanges("indvars-post-increment-ranges", cl::Hidden, cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), cl::init(true))
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static Instruction * GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint)
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE)
Return true if this instruction generates a simple SCEV expression in terms of that IV.
static Instruction * findCommonDominator(ArrayRef< Instruction * > Instructions, DominatorTree &DT)
Find a point in code which dominates all given instructions.
static Instruction * getInsertPointForUses(Instruction *User, Value *Def, DominatorTree *DT, LoopInfo *LI)
Determine the insertion point for this user.
static std::optional< BinaryOp > matchBinaryOp(Instruction *Op)
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Virtual Register Rewriter
static const uint32_t IV[8]
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Predicate getPredicate() const
Return the predicate for this instruction.
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI APInt getUnsignedMin() const
Return the smallest unsigned value contained in the ConstantRange.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI unsigned getMinSignedBits() const
Compute the maximal number of bits needed to represent every value in this signed range.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
LLVM_ABI Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
void setSameSign(bool B=true)
CmpPredicate getCmpPredicate() const
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
Interface for visiting interesting IV users that are recognized but not simplified by this utility.
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Represents a single loop in the control flow graph.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
const Loop * getLoop() const
This class uses information about analyze scalars to rewrite expressions in canonical form.
static LLVM_ABI bool canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi, PHINode *WidePhi, Instruction *OrigInc, Instruction *WideInc)
Return true if both increments directly increment the corresponding IV PHI nodes and have the same op...
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI std::optional< bool > evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI=nullptr)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L, return a LoopInvaria...
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI std::optional< SCEV::NoWrapFlags > getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO)
Parse NSW/NUW flags from add/sub/mul IR binary operation Op into SCEV no-wrap flags,...
LLVM_ABI const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask)
Convenient NoWrapFlags manipulation that hides enum casts and is visible in the ScalarEvolution name ...
LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV properly dominate the specified basic block.
LLVM_ABI bool canReuseInstruction(const SCEV *S, Instruction *I, SmallVectorImpl< Instruction * > &DropPoisonGeneratingInsts)
Check whether it is poison-safe to represent the expression S using the instruction I.
LLVM_ABI bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI int getFPMantissaWidth() const
Return the width of the mantissa of this type.
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
@ User
could "use" a pointer
NodeAddr< DefNode * > Def
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
PHINode * createWideIV(const WideIVInfo &WI, LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, DominatorTree *DT, SmallVectorImpl< WeakTrackingVH > &DeadInsts, unsigned &NumElimExt, unsigned &NumWidened, bool HasGuards, bool UsePostIncrementRanges)
Widen Induction Variables - Extend the width of an IV to cover its widest uses.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI cl::opt< unsigned > SCEVCheapExpansionBudget
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, const TargetTransformInfo *TTI, SmallVectorImpl< WeakTrackingVH > &Dead)
SimplifyLoopIVs - Simplify users of induction variables within this loop.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
std::pair< bool, bool > simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, const TargetTransformInfo *TTI, SmallVectorImpl< WeakTrackingVH > &Dead, SCEVExpander &Rewriter, IVVisitor *V=nullptr)
simplifyUsersOfIV - Simplify instructions that use this induction variable by using ScalarEvolution t...
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
DWARFExpression::Operation Op
constexpr unsigned BitWidth
LLVM_ABI bool formLCSSAForInstructions(SmallVectorImpl< Instruction * > &Worklist, const DominatorTree &DT, const LoopInfo &LI, ScalarEvolution *SE, SmallVectorImpl< PHINode * > *PHIsToRemove=nullptr, SmallVectorImpl< PHINode * > *InsertedPHIs=nullptr)
Ensures LCSSA form for every instruction from the Worklist in the scope of innermost containing loop.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Collect information about induction variables that are used by sign/zero extend operations.