Skip to main content
Springer Nature Link
Log in

Basalt Fiber Reinforced PC/ABS Blend 3D Printed Hybrid Composites: An Investigation on the Mechanical and Dynamic Mechanical Properties

  • Research Article-Mechanical Engineering
  • Published:

Abstract

Additive manufacturing (AM) is the latest technological advancement for producing intricate components for various applications, with a focus on fused deposition modeling (FDM) in development and manufacturing. Natural fibers in 3D printing are being explored for eco-friendly manufacturing methods. This paper provides an overview of 3D printing filaments with natural fibers, detailing the fabrication process and characterization of thermoplastic materials blended with wire filaments from natural fibers. The assessment includes mechanical properties, dimensional stability, and morphology of wire filaments. Incorporating basalt fiber (BF) in PC/ABS matrix increased tensile strength and modulus up to 10 wt%, with a subsequent decline (Tensile modulus improved by 45.65%). The specific modulus improved (41.84%) while specific tensile strength remained unaffected. BF reinforcement impacted flexural strength (19.67%) and modulus (improved by 19.2%), with analysis revealing effective coefficient and reinforcing efficiency. Optimal fiber dispersion is observed at 10 wt%, with positive fiber–matrix interaction. Water absorption and porosity percentages aligned at 10 wt% of BF in the matrix. Scanning electron microscopy and FTIR analysis examined microstructure and functional groups of the composites. The composites with 10 wt% BF showed higher storage modulus from 40 to 90 °C. Experimental results is compared with theoretical models, showing promising outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from 17,985円 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Mohd, N.A.; Mohammad, K.W.; Mohd, H.R.: Mechanical characteristics of oil palm fiber reinforced thermoplastics as filament for fused deposition modeling. The Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s40436-019-00287-w

    Article Google Scholar

  2. Aravind, D.; Senthilkumar, K.; Rajini, N.: Thermal and tensile properties of 3D printed ABS-glass fibre, ABS-glass fibre-carbon fibre hybrid composites made by novel hybrid manufacturing technique. J. Thermoplast. Compos. Mater. (2023). https://doi.org/10.1177/08927057231170805

    Article Google Scholar

  3. Anuj, S.; Aswathy, N.R.; Aswini, K.M.: Enhancing the fiber-matrix interface of r-ABS and bamboo fiber composite developed through melt compounding: An analysis of mechanical and morphological. J. Thermoplast. Comp. Mater. (2023). https://doi.org/10.1177/08927057231211481

    Article Google Scholar

  4. Mohd, N.A.; Mohammad, R.; Mastura, M.T.; Faizal, M.Z.L.: A review of natural fiber-based filaments for 3D printing: filament fabrication and characterization. Materials (2023). https://doi.org/10.3390/ma16114052

    Article Google Scholar

  5. Lucas, P.F.; Walter, R.W.; Marco, A.; D.P.: ABS composites with cellulose fibers: Towards fiber-matrix adhesion without surface modification. Compos. Part C (2021). https://doi.org/10.1016/j.jcomc.2021.100142

    Article Google Scholar

  6. Johnny, N.M.; Klohn, T.G.: Dynamic mechanical, thermal, and morphological study of ABS/textile fiber composites. Polym. Bull. (2010). https://doi.org/10.1007/s00289-009-0200-6

    Article Google Scholar

  7. Burdun, N.; Nabila, T.N.: Fabrication and characterization on physio – mechanical and structural properties of sawdust reinforced acrylobutadiene styrene (ABS) composites. Mater. Sci. Appl. (2020). https://doi.org/10.4236/msa.2020.119043

    Article Google Scholar

  8. Sairabano, T.I.; Naveed, R.; Ujala, F.: Study of surface mechanical characteristics of ABS/PC blends using nanoindentation. Processes (2021). https://doi.org/10.3390/pr9040637

    Article Google Scholar

  9. Mnvrl, K.; Ramakrishnan, R.; Alnura, O.: 3D printed polycarbonate reinforced acrylo-butadiene-dtyrene composites: composition effects on the mechanical properties, micro-structure and void formation study. J. Mech. Sci. Technol. (2019). https://doi.org/10.1007/S12206-019-1011-9

    Article Google Scholar

  10. Alessia, R.; Marinella, L.; Joshua, M.P.: Recycled polycarbonate and plycarbonate/acrylonitrile butadiene styrene feedstocks for circular economy product applications with fused granular fabrication based additive manufacturing. Sustain. Mater. Technol. (2023). https://doi.org/10.1016/j.susmat.2023.e00730

    Article Google Scholar

  11. Tao, W.; Wang, B.; Wang, N.: Research progress on basalt fiber-based functionalized composites. Rev. Adv. Mater. Sci. (2023). https://doi.org/10.1515/rams-2022-0300

    Article Google Scholar

  12. Tavadi, A.R.; Naik, Y.; Kumaresan, K.: Basalt fiber and its composite manufacturing and applications: an overview. Int. J. Eng. Sci. Technol. (2021). https://doi.org/10.4314/ijest.v13i4.6

    Article Google Scholar

  13. Guang, Z.L.; Shuai, Z.; Hao, Y.: Enhancing the mechanical properties of basalt fiber/nylon 6 composites by surface roughening and hydrogen bonding interaction. J. Polym. Compos. (2024). https://doi.org/10.1002/pc.28304

    Article Google Scholar

  14. Anna, K.; Stanislaw, K.: Basalt/wood hybrid composites based on polypropylene: morphology, processing properties, and mechanical and thermal expansion performance. Materials (2019). https://doi.org/10.3390/ma12162557

    Article Google Scholar

  15. Karolina, M.; Paulina, J.; Paulina, R.; Stanislaw, K.: Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. Compos. B Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.108399

    Article Google Scholar

  16. Anni, W.; Peng, Y.; Xiaogang, L.; Guiun, X.: Hydrothermal effect on ramie-fiber-reinforced polymer composite plates: water uptake and mechanical properties. Polymers (2023). https://doi.org/10.3390/polym15143066

    Article Google Scholar

  17. Santosh, K.; Divya, Z.; Sumit, B.: Investigation of mechanical and viscoelastic properties of flax- and ramie-reinforced green composites for orthopedic implants. J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-04845-3

    Article Google Scholar

  18. Keon-Soo, J.: Mechanics and rheology of basalt fiber-reinforced polycarbonate composites. Polymer (2017). https://doi.org/10.1016/j.polymer.201806004

    Article Google Scholar

  19. Binjie, Z.; Jingde, Y.; Yujiao, L.: Bioinspired basalt fiber composites with higher impact resistance through coupling sinusoidal and helical structures inspired by mantis shrimp. Int. J. Mech. Sci. (2023). https://doi.org/10.1016/j.ijmecsci.2022.108073

    Article Google Scholar

  20. Konstantinos, K.; Soňa, R.; Ondřej, K.: Preparation, thermal analysis, and mechanical properties of basalt fiber/epoxy composites. Polymers (2020). https://doi.org/10.3390/polym12081785

    Article Google Scholar

  21. Xiaoyu, B.; Runzhou, H.: 3D printing of natural fiber and composites: a state-of-the-art review. Mater. Des. (2022). https://doi.org/10.1016/j.matdes.2022.111065

    Article Google Scholar

  22. Waleed, A.; Fady, S.A.: Implementing FDM 3D printing strategies using natural fibers to produce biomass composites. Materials (2020). https://doi.org/10.3390/ma13184065

    Article Google Scholar

  23. Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.: Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications. Polymers (2021). https://doi.org/10.3390/polym13081326

    Article Google Scholar

  24. Tablit, S.; Rachida, K.; Salah, A.: Effect of chemical treatments of arundodonax fibre on mechanical and thermal properties of the PLA/PP blend composite filament for FDM 3D printing. J. Mech. Behav. Biomed. Mater. (2024). https://doi.org/10.1016/j.jmbbm.2024.106438

    Article Google Scholar

  25. Visha, I.M.; Kapil, C.H.R.; Sushant, N.: 3D printing with recycled ABS resin: Effect of blending and printing temperature. Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2023.128317

    Article Google Scholar

  26. Muhammad, H.N.; Ali, H.A.; Waleed, A.: The potential of adopting natural fibers reinforcements for fused deposition modeling: characterization and implications. Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e15023

    Article Google Scholar

  27. Srilaxmi, N.; Suresh Kumar, J.; Sunil kumar, J. : Investigation of mechanical characteristics of 3D printed composite materials (Polyoxymethylene and Nylon (PA6)). J. Polym. Compos. (2024).

  28. Müller, M.; Šleger, V.; Kolář, V.: Low-cycle fatigue behavior of 3D-printed PLA reinforced with natural filler. Polymers 14(7), 1301 (2022). https://doi.org/10.3390/polym14071301

    Article Google Scholar

  29. Carl, G.S.; Timo, H.; Erik, H.: 3D printing of high density polyethylene by fused filament fabrication. Addit. Manuf. 28, 152–159 (2019). https://doi.org/10.1016/j.addma.201905003

    Article Google Scholar

  30. Thomas, H.; Diana, S.; Dorit, N.: 3D printing of ABS barium ferrite composites. Materials (2020). https://doi.org/10.3390/ma13061481

    Article Google Scholar

  31. Venkatesh, R.: Synthesis and behavior study of basalt fiber-made low-density polyethylene composites via injection molding. J. Inst. Eng. India Ser. D. (2024). https://doi.org/10.1007/s40033-024-00727-3

    Article Google Scholar

  32. Abdelhaleem, A.M.M.; Abdellah, M.Y.; Fathi, H.I.: Mechanical properties of ABS embedded with basalt fiber fillers. J. Manuf. Sci. Prod. (2016). https://doi.org/10.1515/jmsp-2016-0006

    Article Google Scholar

  33. Subramanian, H.F.: Silane coupling agents in basalt-reinforced polyester composites. Int. J. Adhes. Adhes. (1980). https://doi.org/10.1016/0143-7496(80)90035-4

    Article Google Scholar

  34. Wang, W.; Zhao, G.; Guan, Y.: Study on effects of short glass fiber reinforcement on the mechanical and thermal properties of PC/ABS composites. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40697

    Article Google Scholar

  35. He, L.; Xia, F.; Wang, Y.; Yuan, J.: Mechanical and dynamic mechanical properties of the amino silicone oil emulsion modified ramie fiber reinforced composites. Polymers (2021). https://doi.org/10.3390/polym13234083

    Article Google Scholar

  36. Chen, D.; Pi, C.; Chen, M.: Amplitude-dependent damping properties of ramie fiber-reinforced thermoplastic composites with varying fiber content. Polym. Compos. (2019). https://doi.org/10.1002/pc.25066

    Article Google Scholar

  37. Agarwal, J.; Mohanty, S.; Nayak, S.K.: Influence of cellulose nanocrystal/sisal fiber on the mechanical, thermal, and morphological performance of polypropylene hybrid composites. Polym. Bull. (2008). https://doi.org/10.1007/s00289-020-03178-4

    Article Google Scholar

  38. Chaharmahali, M.; Tajvidi, M.; Najafi, S.K.: Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polym. Compos. (2008). https://doi.org/10.1002/pc.20434

    Article Google Scholar

  39. Hargitai, H.; Racz, I.; Anandjiwala, R.D.: Development of HEMP fiber reinforced polypropylene composites. J. Thermoplast. Compos. Mater. (2008). https://doi.org/10.1177/0892705707083949

    Article Google Scholar

  40. Mokhtar, I.; Yahya, M.Y.; Kadir, M.R.A.: Mechanical characterization of Basalt/HDPE composite under in-vitro condition. Polym.-Plast. Technol. Eng. (2013). https://doi.org/10.1080/03602559.2013.769575

    Article Google Scholar

  41. Colombo, M.; Francisco, R.V.; Deepa, K.: Influence of reinforcing efficiency of clay on the mechanical properties of poly (butylene terephthalate) nanocomposite. Ceramics (2023). https://doi.org/10.3390/ceramics6010005

    Article Google Scholar

  42. Arul, J.K.A.; Prakash, M.: Mechanical and morphological characterization of basalt/Cissus quadrangularis hybrid fiber reinforced polylactic acid composites. Proc Inst Mech Eng Part C (2020). https://doi.org/10.1177/0954406220911072

    Article Google Scholar

  43. Krishnasamy, S.; Thiagamani, S.M.K.; Muthukumar, C.: Effects of stacking sequences on static, dynamic mechanical and thermal properties of completely biodegradable green epoxy hybrid composites. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab3ec7

    Article Google Scholar

  44. Pappu, A.; Pickering, K.L.; Thakur, V.K.: Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crops Prod. (2019). https://doi.org/10.1016/j.indcrop.2019年05月04日0

    Article Google Scholar

  45. Raja, N.D.; Kumar, K.V.A.; Salunkhe, S.: Investigation of water absorption properties of 2D interwoven Kevlar – jute reinforced hybrid laminates. J. Compos. Sci. (2023). https://doi.org/10.3390/jcs7050187

    Article Google Scholar

  46. Mashelmie, S.; Mohamed, R.M.; Nor, B.B.: Water absorption study on Kenaf/ABS composites. J. Adv. Res. Fluid Mech. Ther. Sci. (2022). https://doi.org/10.37934/arfmts.99.2.180186

    Article Google Scholar

  47. David, A.J.: Fiber Orientation Quantification for Large Area Additively Manufactured Parts using SEM imaging. Polymers (2023). https://doi.org/10.3390/polym15132871

    Article Google Scholar

Download references

Author information

Authors and Affiliations

  1. B S Abdur Rahman Crescent Institute of Science & Technology, Chennai, India

    Basanta Kumar Behera

Authors
  1. Basanta Kumar Behera

Corresponding author

Correspondence to Basanta Kumar Behera.

Ethics declarations

Conflict of interest

This research work has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Cite this article

Behera, B.K. Basalt Fiber Reinforced PC/ABS Blend 3D Printed Hybrid Composites: An Investigation on the Mechanical and Dynamic Mechanical Properties. Arab J Sci Eng (2025). https://doi.org/10.1007/s13369-025-10837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s13369-025-10837-z

Keywords

AltStyle によって変換されたページ (->オリジナル) /